• Title/Summary/Keyword: 유동 혼합 특성

Search Result 510, Processing Time 0.024 seconds

An Experimental Study on Fundamental Quality Properties of Basalt Fiber Reinforced Mortar according to Application of High Volume Fly Ash (바잘트 섬유보강 모르타르의 하이볼륨 플라이애시 적용에 따른 기초 품질 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung Keol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This study was evaluated that fundamental quality properties in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber. Mortar mixtures used in the experiments used the mortar using cement only and high volume fly ash mortar using fly ash of 50%, was evaluated by comparison. As a experiments results, high volume fly ash mortar using 50% fly ash was effective for improving fiber dispersibility than mortar using cement only, accordingly, it showed that fiber aggregation phenomenon has been greatly reduced. In addition, if the fly ash used much more than 50%, the compressive strength has been shown to decrease of about 30%, fiber length and mixing ratio of basalt fiber was found to have a greater effect on flow properties than mechanical properties.

다상 나노 복합 구조를 가지는 Cu계 벌크 비정질 합금에서 불균일성 제어에 의한 특성 조절

  • Kim, Jin-U;Park, Eun-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.502-502
    • /
    • 2011
  • 기존 연구에서는 단일 타겟으로부터 증착된 코팅층 내에 다상으로 이루어진 나노 복합구조를 형성하기 위하여, 나노 합금분말을 방전플라즈마 소결법 등으로 급속 소결하여 타겟을 제조하는 방법이 고려되어 왔다. 반면, 비정질 재료가 우수한 비정질 형성능을 가지는 경우 주조 방법에 의해서도 타겟 제조가 가능하며, 특히 최근 들어 금속 비정질 합금에서 합금의 주요 구성 원소들이 양의 혼합열을 가지는 경우, 액상 또는 과냉각 액상에서 상분리 현상이 발생한다는 것이 밝혀졌다. 이러한 사실에 기초하면, 우수한 비정질 형성능을 가지는 합금 시스템에 합금 구성 원소와 양의 혼합열 관계를 갖는 원소를 첨가함으로써, 비정질 기지 내에 화학적 불균일성을 유도하여 다상으로 이루어진 복합 구조를 형성시키는 것이 가능하다. 본 연구에서는 이러한 합금 설계법을 이용하여, 비정질 기지 내에 존재할 수 있는 불균일성 정도를 합금 조성과 주조 조건의 변화를 통하여 나노 크기에서 원자 크기까지 조절하고, 이에 따른 재료 특성과의 상관관계를 밝히고자 하였다. 이를 위하여 우수한 비정질 형성능을 가지는 Cu-(Zr, Hf)-Al 벌크 비정질 합금계에서 (Zr, Hf)과 (Y, Gd)간의 양의 혼합열 관계에 주목하여 Cu-(Zr, Hf)-(Y, Gd)-Al 벌크 비정질 형성 합금계를 설계하였으며, 이 합금계 내에서 조성과 냉각속도의 조절에 따라 나타나는 불균일성의 정도와 특성변화의 영향을 체계적으로 고찰하였다. 결과로서, Cu-(Zr, Hf)-Al 합금계에서 (Zr, Hf)을 (Y, Gd)으로 15 at.% 이상 치환한 경우, Cu-(Zr, Hf)-rich 와 Cu-(Y, Gd)-rich 비정질상으로 이상분리가 일어났으며, 이렇게 생성된 비정질-비정질 복합재는 응력 하에서 소성 변형을 거의 보이지 않았다. 반면, 5 at.% 이하로 (Zr, Hf)을 (Y, Gd)으로 치환한 경우에는 비정질 기지에 SAXS 혹은 WAXS로 확인 가능한 원자 크기의 불균일성이 나타났으며, 이 경우 비정질 합금의 점성 유동의 변화를 통해 합금의 연신 특성이 향상되었다. 특히, 본 연구에서는 비정질 기지내 불균일 제어를 통한 기계적 특성 향상을 위해서 조성 제어뿐 아니라 동역학적인 요소를 고려한 냉각속도 조절을 통한 원자단위 불균일성의 최적화가 필요함을 규명하였다. 이러한 연구 결과는 분말화 및 소결 과정을 배제하고 제조된 단일 타겟을 통해 코팅층에 다수의 합금원소를 혼합하고 나노/원자 스케일의 복합구조 형성 및 고집적화가 가능한, 타겟 모물질 설계의 새로운 방향을 제시함으로써 다기능성 복합소재 코팅층의 연구에 크게 기여할 것으로 사료된다.

  • PDF

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Analysis on Turbulent Scalar Field in a Channel with Wall Injection using LES Technique (LES기법을 이용한 벽면 분출이 있는 채널 내부의 난류 유동 및 스칼라장 특성 해석)

  • Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2009
  • Large eddy simulation was conducted for flow development in a chamber with wall injection which simulates the cold flow in an idealized hybrid rocket motor. It was found that a peculiar timescale, roughly corresponding to St~0.5, resides in the flowfield resulting from the interaction between the main oxidizer and wall injected flows. However, the fact that this time characteristics is absent in the temperature field in the vicinity of the wall indicates that even a small regression rate renders the passive scalar, such as temperature, dissimilar to the velocity field. This implies that a classical approach, which assumes that constant turbulent Prandtl number, should be replaced by a more sophisticated turbulence models to accurately predict the temperature field in the hybrid motor.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

A Study on Heat Transfer Characteristics in Flow Boiling of Pure Refrigerants and Their Mixtures in Horizontal Tube (수평 전열관내 유동비등하는 순수냉매와 혼합냉매의 열전달 특성에 관한 연구)

  • 임태우;한규일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2003
  • An experimental study was carried out in a uniformly heated horizontal tube to examine heat transfer characteristics of pure refrigerants, R134a and R123, and their mixtures during flow boiling. The flow pattern was also observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa and in the heat flux ranges of 5~100 kW/$m^2$, vapor Quality 0~100 percent and mass velocity of 150-600 kg/$m^2$s. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire range of mass velocity employed in this study. Heat transfer coefficients of the mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant.

Atomization Characteristics of 2-Phase Atomizer with the change of Mixing Chamber Structure (혼합실 구조 변경에 의한 2상 노즐의 미립화 특성)

  • Ha, M.H.;Kim, K.C.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.699-704
    • /
    • 2001
  • The purpose of this study is to present the atomization characteristics of 2-phase internal mixing nozzle. The obtained results are considered as the essential information of understanding the spray characteristics from the nozzle exit of an aerated nozzle. In this study, SMD and AMD are mainly measured at the distance of Z=10, 20, 50, 80, 120 and 170mm from the nozzle tip. The liquid flow rate was kept at 1.8g/s and the air feeding pressure was changed from 10kpa to 100kpa increasingly. The analysis of the acquired data was performed by 2-D PDPA system and in order to get the realibility, the number of data used in calculating the SMD & AMD were 10,000 samples.

  • PDF

A Study on the Function of Organic Admixture in Fly Ash Substituting Fresh Concrete (플라이애쉬를 혼합(混合)한 굳지않은 콘크리트에 있어서 유기혼화제(有機混和劑)의 기능(機能)에 관한 연구(研究))

  • Moon, Han Young;Sea, Joung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • From the test results of the adsorption characteristics of AE admixture, it was shown that the adsorption of AE admixture on fly ash was mearly completed in 30 minutes and the higher was ignition loss, the larger the quantity of saturation adsorption. Because most of the ignition loss of the fly ash was due to the unburned carbon, it could be said that the unburned carbon is the main reason of reduction of air content in AE concrete. On the other hand, in the case of superplasticizer, the amount of saturation adsorption in fly ash was lower than in cement and the same result was obtained in the dispersive effect. But, when using superplasticizer in fly ash substituting concrete, the fludity in the concrete was not decreased.

  • PDF

Structural Change of Supersonic Jet Due to Liquid Injection in Supersonic Backward Facing Step Flow (초음속 후향 계단 유동에서 액체 분사로 인한 초음속 제트의 구조 변화)

  • Ahn, Sang-Hoon;Han, Doo-Hee;Choi, Han-Young;Seo, Seong-Hyeon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • The experiment on the liquid jet in crossflow in supersonic BFS (backward-facing step) flow was conducted to investigate the mixing characteristics. The working fluids are nitrogen and water. The shadow graph technique was used to visualize the flow field. Images captured by the high-speed camera were applied to analyze the flow phenomena. The liquid jet was injected at the re-circulation zone created by the supersonic jet flow. Experimental conditions are defined based on the pressure of the nitrogen gas chamber and pressurized liquid tank. In respective cases, the penetration depth of liquid jet and location of the Mach disc were observed to be proportional to the momentum ratio of gas and liquid jets.