• Title/Summary/Keyword: 유동 밸런스

Search Result 14, Processing Time 0.027 seconds

A Study on flow Balance and Warpage Characteristics in Manufacturing of Plastic Injection Family Mould (Family 금형 제작에서의 유동 밸런스 및 휨특성에 관한 연구)

  • Kim K. H.;Song D. J.;Kwon C. O.;Lee S. H.;Heo Y. M.;Kim M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.141-146
    • /
    • 2005
  • In the present study, the characteristic of warpage and flow balance for family mould, which is able to mold parts with different shapes in a mold, is considered. To obtain an optimal gate and runner system, plastic injection molding analysis with commercial code is performed. Design and manufacturing of family mould is then carried out on the basis of this computer aided engineering result. Flow balance and warpage comparisons between experiment and numerical analysis give good agreement with each other. However, it was shown that results of warpage measured by CMM was about $20\~55\%$ lower than those of numerical analysis.

  • PDF

Flow Analysis to Determine Runner Balance in Family Injection Molding (훼밀리 몰드 성형에서 러너밸런스 결정을 위한 유동해석)

  • 김용조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.64-70
    • /
    • 1999
  • Family injection molding of plastic is widely used to enhance productivity. Runners for molded products in fami-ly injection molding have to be balanced so that each of the producs is filled completely at the same time,. In this study computer simulations were performed to determine balanced circular section runners in family injection molding with two cavities where each of he cavity shapes is like a case. It was found from the computer simula-tions that runner balance could be fulfilled only by modifying runner diameters. But in order to get more quality molded products other process factors such as flow length flow resistance shapes of products and etc, should be taken in to consideration for the design of a family injection molding process.

  • PDF

Experimental Study on the Aerodynamic Characteristics of the Ducted Fan for a Small UAV (소형 무인기 추진용 덕티드 팬의 공력특성에 관한 실험적 연구)

  • Kim, Jae-Kyeong;Choi, Hyun-Min;Cha, Bong-Jun;Lee, Sang-Hyo;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.251-256
    • /
    • 2008
  • The experimental analysis on a ducted fan for the propulsion system of a small UAV were performed. To investigate the aerodynamic characteristics of the ducted fan, flow fields at inlet and outlet were measured using a hot-wire anemometry. Thrusts were measured with the six-component balance with due regard to the cross wind. To reproduce the cross wind effect, the ducted fan was aligned to $90^{\circ}$ rotated direction against flow direction in the wind tunnel. In this paper, the variation of the flow fields and thrust according to the cross wind were analyzed.

  • PDF

A Study on Flow Balance and Cavity Pressure in Family Mold (FAMILY MOLD의 유동 밸런스와 금형 내압에 관한 연구)

  • 김태철;이대근;홍기복;김영근;박인수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.603-607
    • /
    • 2002
  • Cavity pressure is a factor of what is occurring inside the mold and is used as one of the process parameters that control the overall injection molding cycle. The insight of cavity pressure is able to predict part quality and optimum process condition. In this paper, it is adapted ejector pin sensor to measure the cavity pressure and investigates the flow balance and the cavity pressure according to different runner thickness for adjusting the flow balance. Flow balance is very important to have not the poor results such as flash and warpage in the family mold. This paper predicted flow balance and cavity pressure using CAE analysis tool and compared with the test results. The results of analysis and test have a good agreement with the cavity pressure profile and flow pattern of the test.

  • PDF

The Stern Hull Form Design using the Flow Analysis around Stern Skeg (선미 스케그 주위의 유동 분석에 의한 선미 형상 설계)

  • Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The optimized distance between skegs and angle of the skeg for a standard twin-skeg type LNG carrier were presented using the CFD and model tests. The evaluation method of self-propulsion performance was derived based on the results of CFD and confirmed the validity through model tests. The analyses to assess self-propulsion performance using CFD were shown by flow line patterns on the skeg surface, nominal wake distribution in the propeller plane and the evaluation for flow balance around stern skegs. The optimized ship that was applied to the optimized two design parameters in stern skeg arrangement for target ship was derived in this work. Finally speed performance of mother ship which is existing ship and optimized ship were compared through CFD and model tests. And the usefulness about the evaluation method of self-propulsion performance was reconfirmed.

Optimization of Gate Location for Melt Flow Balancing in Injection Mold Cavity By Using Recursive Design Area Reduction Method (설계영역 반복축소법에 의한 사출금형의 수지 유동균형을 위한 게이트 위치 최적화)

  • Park, Jong-Cheon;Lee, Gyu-Seok;Choi, Seong-Il;Kang, Jin-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.114-122
    • /
    • 2013
  • This study introduces an optimization methodology for the determination of gate location that ensures the melt flow balance within a part cavity of injection mold. A new sequential direct-search scheme based on the recursive reduction of the designer-specified gate design area is developed, and it is integrated with a commercial flow simulation tool for optimization. To quantify the level of melt flow balance, we employ the maximum difference among the fill times for the melt fronts to reach the boundary elements of part cavity as objective function. The proposed methodology is successfully applied in the case study of melt flow balancing in molding of a bar code scanner model. The result shows that the melt flow balance at the optimized gate positions is significantly improved from that for the initial gate position.

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

A POA Monitoring scheme for effective resource utilization of CORBA POA in embedded environment (Embedded환경에서 CORBA POA의 효율적인 자원활용을 위한 POA Monitoring기법)

  • Kwun Sung-Hyun;Kim Jai-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.655-657
    • /
    • 2005
  • 최근 유비쿼터스(Ubiquitous) 시대가 도래함에 따라 홈 네트워킹(Home Networking)환경과 이동컴퓨팅 환경에 주로 사용되는 임베디드 시스템을 효과적으로 이용하기 위해서 미들웨어가 필요하게 되었다. 그러나 임베디드 시스템의 제한된 자원을 효율적으로 이용하기 위해 미들웨어의 최적화가 중요하다. 본 논문에서는 CORBA 컴포넌트(Component)중 POA(Portable Object Adapter)와 ORB(Object Resource Broker)사이의 상황을 모니터링 함으로써 기존 POA의 지속적인 서비스정책을 유동적으로 설정하고 특정 POA에 집중된 Servant들을 로드 밸런스를 한다. 이를 통해 임베디드환경에 맞는 효과적인 CORBA POA를 구성할 수 있는 기법을 제안한다.

  • PDF

A Experimental Study of Aerodynamic Interference on Quad-Tilt Propeller UAV Wings in Forward Flight Condition (전진 비행하는 Quad-Tilt Propeller 형상 무인기 날개에서 나타나는 공력간섭 현상에 대한 실험적 연구)

  • Kim, Taewoo;Chung, Jindeog;Kim, Yangwon;Park, Cheolwan;Cho, Taehwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • In this study, wind tunnel test on Quad-Tilt Propeller which has tandem wings is carried out to analyze the aerodynamic interference effect of front wing and propeller on rear wing during forward flight. Using 6-axis balance system, forces and moments of whole aircraft were measured and using strain gauge at wing root, bending moments were measured to observe change of aerodynamic force of each wings. A 12-hole probe was used to measure the flow field in the wing and propeller wake. Flow characteristics were observed qualitatively through flow visualization experiment using tuft and smoke. To measure the aerodynamic interference by elements, the influence of front wing and propeller on rear wing was analyzed by changing the wings and propellers mount combination.

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.