• Title/Summary/Keyword: 유동 계수

Search Result 1,312, Processing Time 0.025 seconds

Experimental Study on Heat Transfer Characteristics of Oil Cooler Inserted Offset Strip Fin (옵셋 스트립 휜 삽입 오일쿨러의 열전달에 관한 실험적 연구)

  • Yoo, Jung-Won;Park, Jae-Hong;Kwon, Yong-Ha;Kim, Young-Soo;Lee, Byung-Kil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1237-1242
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with oil cooler with offset strip fin using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient in a vertical oil cooler. Downflow of hot water in one channel receives heal from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the on cooler with offset strip fin remains turbulent. The present data show that the heat transfer coefficient increases with the Reynolds number. Based. On the present data, empirical correlation of the heat transfer coefficient was proposed. Also, performance prediction analysis for oil cooler were executed and compared with experiments. ${\varepsilon}-NTU$ method was used in this prediction program. Independent variables are flow rates and inlet temperature. Compared with experimental data, the accuracy of the program is within the error bounds of ${\pm}5$% in the heat transfer rate.

  • PDF

Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade (사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon Hyun;Sim, Jae Kyung;Woo, Chang Soo;Lee, Dae Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun;Lee, Dae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

Heat Transfer Analysis for Variable Thrust Control System Using 1-Way Coupling (일방향 연계를 활용한 연속가변 추력제어 시스템의 열전달 해석)

  • Lee, JiHun;Jang, HanNa;Kim, GyuBin;Cho, JinYeon;Kawk, JaeSu;Ko, JunBok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.388-391
    • /
    • 2017
  • In this study, heat transfer analysis of variable thrust control system have been conducted by using commercial CFD code and FEM code. We Carried out computational fluid dynamics analysis to obtain the temperature and convective heat transfer coefficient of hot gas of variable thrust control system. Data are used as boundary condition for heat transfer analysis using mapping method. Temperature of O-ring for sealing was predicted

  • PDF

Flow Measurement of Liquid Oxygen using the Multi-hole Orifice (다공 오리피스를 이용한 액체산소 유량측정)

  • Lim, Hayoung;Lee, Jisung;Kim, Junghan;Noh, Yongoh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1031-1035
    • /
    • 2017
  • To measure the flow rate of the liquid oxygen, two types of multi-hole orifice meter were prepared. The $C_d$ of the orifice meter was determined by the flow test using water. After performing the liquid oxygen flow test for orifice meter and Coriolis meter, the mass flow rate was calculated using the $C_d$. The error of the mass flow rate compare to Coriolis meter, A-type(1/2") was below than 0.4%, B-type(3/4") was below than 0.8%.

  • PDF

A Numerical Study on the Effect of Coefficient of Restitution to Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기 내의 열전달에 미치는 복원계수의 영향에 대한 수치해석 연구)

  • Kang, Seung Mo;Park, Woe-Chul;Abdelmotalib, Hamada;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, numerical simulations on conical fluidized bed combustors were carried out to estimate the effect of coefficients of restitution between particle and particle and particle to wall on hydrodynamics and heat transfer. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics and heat transfer in a conical fluidized bed combustor. The solid phase properties were calculated by applying the kinetic theory of granular flow. Simulations results show that increasing the restitution coefficient between the particle and particle results in increasing the bed pressure drop. On other hand, the increasing of particle to wall coefficient of restitution results in decreasing the bed pressure drop. It is found that the coefficient of restitution has little effect on heat transfer.

Numerical Modelling of Longshore Currents using $\textsc{k}$-ι Turbulence Closure ($\textsc{k}$-ι 난류모형을 이용한 연안류 수치해석)

  • 유동훈;김창식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.234-244
    • /
    • 1994
  • Longshore currents driven by monochromatic waves have been described using 2-equation $textsc{k}$-ι turbulence transport model. When using $textsc{k}$-ι closure both profiles of eddy viscosity and current velocity are found to be satisfactory. Several terms of ι equation are related to various variables concerned with turbulence mechanism. New form of turbulence frequency used in ι equation is suggested in the present approach, and non-dimensional parameters are evaluated by comparing the computational results with the laboratory measurements. Various values of a large range are applied to the non-dimensional parameters for the sensitivity test and in order to improve the predictability common values of constants are deduced, which produce similarly good computational results for the well-controlled laboratory measurements.

  • PDF

A Study on the Pressure Loss in Helically Coiled Tubes (나선코일 튜브 내에서의 압력손실에 관한 연구)

  • Han, K.I.;Bark, J.U.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.155-165
    • /
    • 1998
  • The resistance coefficient and heat transfer performance are studied for the turbulent water flow in a smooth coiled tube having variable curvature ratios and a corrugated-coiled tube having a ratio of coil to tube diameter of 22. Experiments are carried out for the fully developed turbulent flow of water in tube coils on the uniform wall temperature condition. This work is limited to tube coils of R/a between 22 and 60 and Reynolds numbers from 13000 to 53000. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. A corrugated-coiled tube(R/a=60) shows more excellent performance than a smooth coiled tub (R/a=60) at a similar curvature ratio. The friction factor f is sensitive to changes in the velocity profile caused by a temperature gradient. Allowance was made for the pressure loss in the short inlet and outlet lengths and due to the presence of the thermocouple inlet and outlet as a result of separate experimental on a straight tube. It is to be expected that the allowance at the exit will be somewhat too low because of secondary flow effects carried over from the coil.

  • PDF