• Title/Summary/Keyword: 유동 가속

Search Result 187, Processing Time 0.028 seconds

Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion (유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석)

  • Jo, Jong-Chull;Kim, Yun-Il;Choi, Seok-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

Technology Based on Wall-Thinning Prediction and Numerical Analysis Techniques for Wall-Thinning Analysis of Small-Bore Carbon Steel Piping (감육예측 및 수치해석 기법을 활용한 소구경 탄소강배관 감육영향 분석에 관한 연구)

  • Lee, Dae-Young;Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 2010
  • In approximately fifty utilities, including KHNP (Korea Hydro & Nuclear Power), CHECWORKS is used as a tool for predicting and managing the wall thinning of carbon steel piping; this wall thinning is caused by flow-accelerated corrosion (FAC). It is known that CHECWORKS is only applicable to predict the wall thinning of piping with large bores. When dealing with small-bore steel piping, FAC engineers measure the thickness of the susceptible area that is selected on the basis of the experience and judgment of the engineer. This paper proposes the application of CHECWORKS for the management of wall thinning of small-bore piping. Four small-bore pipelines of a domestic nuclear power plant were analyzed from the viewpoints of FAC and fluid dynamics by using CHECWORKS and FLUENT code. Depending on the engineer's skill, CHECWORKS can also be used for the management of wall thinning of small-bore piping.

Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System (배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Kim, Hyung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.

Decreasement of Partial Cavitation with Electro-Magnetic Accelerator (전자력 가속에 의한 부분 케비데이션 감소화 연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.4
    • /
    • pp.209-213
    • /
    • 1989
  • The author suggested control method of partial cavitation with electro-magnetic accelerator and showed that the cavity shape decreased with this suggestion which compared with the theoretical ones. Using the cavity flow method proposed by the author in this paper, it is predicted that cavitation volume of the shape is less than the previous type one. Comparisons were performed in order to verify these facts, using both shape which calculated by the method. It was found that the difference of cavitation performance between the two shape of volume were decreased, because of the new method accelerated of flow more than previous theoretical ones.

  • PDF

A Study of Unsteady Aerodynamic Characteristics of an Accelerating Aerofoil (가속익의 비정상 공력특성에 관한 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.556-561
    • /
    • 2003
  • Flight bodies are subject to highly unstable and severe flow conditions during taking-off and landing periods. In this situation, the flight bodies essentially experience accelerating or decelerating flows, and the aerodynamic characteristics can be completely different from those of steady flows. In the present study, unsteady aerodynamic characteristics of an aerofoil accelerating at subsonic speeds are investigated using a computational method. Two-dimensional, unsteady, compressible Navier-Stokes simulations are conducted with a one-equation turbulence model, Spalart-Allmaras, and a fully implicit finite volume scheme. An acceleration factor is defined to specify the unsteady aerodynamics of the aerofoil. The results show that the acceleration of the subsonic aerofoil generally leads to a variation in aerodynamic characteristics and it is more significant at angles of attack.

  • PDF

The Study for an Impulsive Spin-Up Flow in a Shallow Rectangular Container (얕은 사각용기에서의 순간 회전가속 유동에 관한 연구)

  • Im, Gwang-Ok;Gwon, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.339-346
    • /
    • 2001
  • The impulsive spin-up flow in a shallow rectangular container is analyzed numerically by quasi 3-D unsteady laminar flow. In the non-inertia coordinates, the flow is generated by the virtual forces as Coriolis force, etc.. After the boundary layers grow up near sidewalls, primary vortexes separate from the sidewalls. As the Reynolds number increases, the subsidiary vortexes take place in the boundary layer. The rigid body rotation is started from the inner region and propagated to the outer region, finally all the fluid reaches the rigid body rotation. According to the Reynolds number and the aspect ratio, the development of vortex pattern is symmetric or asymmetric.

Analysis of Flow-Accelerated Corrosion Effects by the Type of Orifice (오리피스 유형별 유동가속부식 영향 분석)

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2483-2488
    • /
    • 2008
  • To mitigate the effects of cavitation and flashing, several types of orifices have been installed in the pipeline of new nuclear power plants. To review the effects of wall thinning caused by flow-accelerated corrosion by the types of orifices, which are cone and plate, and the relation between flow behavior and local wall thinning, experiments and numerical analyses for the downstream pipe of two types of orifices were performed. The experimental results in terms of static pressure obtained for the experimental facilities were compared with those of three-dimensional (3D) numerical analyses using the FLUENT code. As the results of review of flow-accelerated corrosion effects based on the experiment and numerical analysis, it was identified that the orifice of cone-type can be comparatively mitigated the effects of cavitation and flashing, but can not be mitigated the effect of flow-accelerated corrosion.

  • PDF

Numerical Simulation of the Experimental Investigation of the Two Dimensional Ram Accelerator Combustion Flow Field (이차원 램 가속기 연소 유동장의 실험적 연구의 수치 모사)

  • 최정열;정인석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.8-23
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the comparison with the experiments performed to investigate the ram accelerator flow field by using an expansion tube facility in Stanford University. Wavier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state numerical simulation shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$$O_2$$17N_2$ fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$$O_2$$12N_2$ mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. From the result of unsteady numerical simulation, the experimental result seems to be an instantaneous state during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF