• Title/Summary/Keyword: 유동층 보일러

Search Result 114, Processing Time 0.026 seconds

A Study of Particle Collection Efficiency and Characteristics of Cyclone(I) (싸이클론 집진효율 및 특성 연구(I))

  • ;;M. Bohnet
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.83-84
    • /
    • 2002
  • 사이클론 집진기(이하 "사이클론"으로 표기)는 1800년대 후반에 기본개념이 싹트기 시작한 이후 100년 이상의 역사를 지닌 집진 장치로서, 구성이 단순하고, 고온 및 고압에서도 동작이 가능하며, 에너지 소모가 적고, 제조비용과 유지비용이 저렴한 특징을 지니고 있다. 현재 산업체에 설치되어 있는 싸이클론은 대용량의 가스처리, 입경 10-200$\mu\textrm{m}$까지의 분진처리, 낮은 초기설치비, 유지보수 및 조작의 간편성 때문에 산업체 여러 분야에서의 응용성은 다양하고 응용범위도 상당히 넓다고 할 수 있으며 석탄가스화 복합발전 플랜트, 쓰레기 소각로, 순환유동층 보일러 등에 널리 사용되고 있다. (중략)

  • PDF

Properties of Concrete Precast Pavers using Non-Cement Binders (무시멘트 결합재를 사용한 콘크리트 보도블록의 특성)

  • Lee, Won-Gyu;Jo, Eun-Seok;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.35-36
    • /
    • 2018
  • Korea has many problems due to the asphalt pavement or impermeable pavement. Many methods are being implemented to improve water circulation. Among them, permeable packaging materials are used. However, existing permeable packaging materials have a problem of causing efflorescence and clogging the pores. The pores of the permeable packing material are clogged and the permeability is lost. This leads to economic problems and product problems. The purpose of this study was to develop a block to prevent efflorescence.

  • PDF

Properties of Non-cement Matrix Using Biomass Fly Ash (바이오매스 플라이애시를 활용한 무시멘트 경화체의 특성)

  • Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.185-186
    • /
    • 2020
  • This study In order to reduce the amount of cement that generates a large amount of carbon dioxide and attempts to find a recycling method to solve environmental problems by using biomass fly ash. Experiments were conducted according to replacement ratio of biomass fly ash based on GGBFS, The test items are flowability, air content, unit volume weight, water absorption, flexural strength and compressive strength. As a result of the experiment, as increased replacement ratio of biomass fly ash, the flowability and air content was increased. As increased replacement ratio, the density was decreased and water absorption was increased. The compressive strength tended to decrease as increased replacement ratio. The flexural strength tended to increased as increased replacement ratio.

  • PDF

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

Review: Utilization of Coal Bottom Ash for Concrete and Mortar (총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용)

  • Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.333-348
    • /
    • 2020
  • The present review dealt with the state-of-art on utilization of coal bottom ash in cement-based concrete and mortar. Two types of bottom ashes generated from pulverized coal combustion and circulating fluidized-bed combustion systems have been considered. The production process, chemical and physical characteristics of both ashes, and the methodology of utilization in various cement composites are summarized. The effect of bottom ash on various properties of concrete, such as workability, strength, and durability, were reviewed from the literature. In addition, the environmental and economic aspects of utilizing bottom ash in concrete are analyzed to explore the perspectives of bottom ash utilization, and through this, the future of the utilization was considered. The effect of bottom ash on the performance of concrete and mortar was greatly depended on the condition, pretreatment, and processing of the ash. Additional processing such as crushing might contribute to stimulating the utilization in this field. In particular, if economic support is possible in terms of policy, utilization rate is expected to be improved.

Effect of Coagulants on the Behavior of Ultra Fine Dust in a Coal Firing Boiler (석탄 화력 보일러에서의 응집제 이용에 따른 초미세먼지 거동)

  • Ryu, Hwanwoo;Song, Byungho
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.84-89
    • /
    • 2020
  • Particulate matters of PM2.5, particularly focusing on 0.1~1 ㎛ decrease the efficiency of dust-collector due to the brownian-motion. This study is to verify the effect of coagulant on the particle size distributions of potassium and PM2.5. The activated coagulant was spayed to the coal fired fluidized bed combustion boiler by the weight ratio of 1,200 : 1 = coal : coagulant, and the size distributions of captured particles at both the cyclone (FP) and electrostatic precipitator (EP) were measured. As the result of XRP analysis, the potassium content of FP increased to 13.33% (averagely from 1.65% to 1.87%) and, in EP at 17.68% (averagely from 1.65% to 2.03%). And it was confirmed by the particle size distribution analyzer and SEM image analysis that the distribution rates of PM2.5 decreased at 89.53% on average in FP, and at 88.57% in EP. The total dust concentration (mg/㎥) confirmed by tele-monitering system (TMS) decreased during the primary test from 2.6 to 1.7~1.9 and also the secondary test from 2.9 to 1.7~1.9.

Effect of Blast Furnace Slag and Desulfurized Gypsum on Hardening of CFBC Boiler Coal Ash (CFBC 보일러 석탄회의 경화에 대한 고로슬래그, 탈황석고의 영향)

  • Lee, Woong-Geol;Kim, Jin-Ho;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.443-450
    • /
    • 2021
  • The effects of blast furnace slag(BFS) and desulfurized gypsum(FDG) on the compressive strength of CFBA, and self-hydration of CFBA were studied. CFBA has self-hydrating and hardening properties, and it can be seen that the compressive strength of CFBA can be improved by using appropriate amounts of BFS and FDG. In addition, the self-hardening properties of CFBA are similar to the hydration reaction of 4CaO·Al2O3·Fe2O3 (C4AF), a cement clinker mineral, and when free-CaO, CaSO4 and CaCO3 coexist, Compressive strength of CFBA is expressed by the formation of calcium carbo compounds and hydrates of ettringite, calcium silicate, and calcium aluminate.

Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler (순환유동층 보일러에서 무연탄-유연탄의 혼합연소 특성)

  • Jeong, Eui-Dae;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study investigated the characteristics of co-combustion of mixed anthracite (domestic and Vietnam) and bituminous coal (Sonoma, Australia) at circulating fluidized bed boiler in Donghae thermal power plant when mixing ratio of bituminous coal is variable. Co-combustion of bituminous coal contributes to improvement in general combustion characteristics such as moderately retaining temperature of furnace and recycle loop, reducing unburned carbon powder, and reducing discharge concentration of NOx and limestone supply owing to improvement in anthracite combustibility as the mixing ratio was increased. However, bed materials were needed to be added externally when the mixing ratio exceeded 40% because of reduction in generating bed materials based on reduction in ash production. When co-combustion was conducted in the section of 40 to 60% in the mixing ratio while the supplied particles of bituminous coal was increased from 6 mm to 10 mm, continuous operation was shown to be possible with upper differential pressure of 100 mmH2O (0.98 kPa) and more without addition of bed materials for the co-combustion of mixed anthracite and bituminous coal (to 50% or less of the ratio) and that of domestic coal and bituminous coal (to 60% of the ratio).

  • PDF

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.