• Title/Summary/Keyword: 유동장 해석

Search Result 1,067, Processing Time 0.026 seconds

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF

Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment (진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석)

  • Yoo, Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient (약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

Heat Transfer Characteristics for Inward Melting in a Horizontal Cylinder (수평원통관 내에서 용융이 일어날 때의 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.44-58
    • /
    • 1990
  • Heat transfer characteristics of heat storing processes in paraffin-filled horizontal circular cylinder is studied. The unmelted solid paraffin is allowed to fall on the bottom wall under gravity. In the upper liquid phase, natural convection is considered to take place while in the lower liquid film between the solid paraffin and the wall conduction is thought to take place instead. Experimental analyses are also carried out. The amount of the latent heat stored is obtained by recording the time wisely changing side area of the solid paraffin photographically. The mass of paraffin melted in the upper section is obtained by substracting the amount of melted mass in the lower section from the total mass melted and therefrom variation of heat transfer rate in each section is studied.

  • PDF

The Numerical Analysis off the Flow-field Around the Korean Tilting Train Express (한국형 틸팅 열차 주위 유동장 수치 해석)

  • 윤수환;김태윤;고태환;권혁빈;이동호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 2004
  • Numerical analysis of aerodynamic characteristics was differently performed according to the running situation of the Korean Tilting Train eXpress(TTX) that would be introduced for an improvement in efficiency of the used railroad track. Fluent 6.0 was used for the analysis of Non-tilting case, Tilting case and Passing-by case with the model of TTX. As a result, the aerodynamic drag had little difference between Tilting and Non-tilting case. However, pressure contour under the train of Tilting case was not symmetry because the gap between a train and the ground was different at both sides. In Passing-by case attraction and counterattraction occurred alternately and affected to the opposite train. When two trains were side by side, the maximum attraction was generated especially. Through an analysis of pressure wave in tunnel a large variation of pressure was generated by the bluff nose of TTX. The results in this study would be good data for the aerodynamic characteristic on TTX and provide important information to judgment of running safety.

Development and Test of Slinger Combustor for Micro Turbojet Engine (초소형 터보제트엔진 슬링거 연소기의 개발과 시험)

  • Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man;Kim, Hyung-Mo;Park, Poo-Min;Choi, Young-Ho;Jeon, Byung-Ho;Park, Soo-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • A slinger combustor which can be applied to micro turbojet engine has been developed with the combustor rig test. A rotating fuel injector with high speed rpm was designed, manufactured and tested to apply into slinger combustor through spray test and adequate droplet size and spray distribution were achieved. The CFD was used to analyze internal flow of the combustor. We found out that the combustor shows 11.2% of pressure loss and 99.8% of combustion efficiency at full combustor rig test.

  • PDF

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method (포텐셜을 기저로한 패널법에 의한 프로펠러의 정상 성능 해석)

  • Kim, Young-Gi;Lee, Jin-Tae;Lee, Chang-Sup;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 1993
  • This paper describes a potential-based panel method for the prediction of steday performance of a marine propeller operating in a uniform oncoming flow. An integral equation with unknown dipole strengths is formulated by distributing the normal dipoles and/or sources on the blade and hub surfaces and the wake sheet, and is solved numerically upon discretization. A hyperboloidal panel has been adopted to compute the potential induced by a normal dipole on a non-planar quadrilateral panel. The Kutta condition is satisfied by iteratively annulling the pressure jumps at the trailing edge. Extensive convergence tests are carried out, and the influence of the wake model upon performance is studied. Predicted performance is shown to correlate well with the experiments.

  • PDF

Numerical Modeling of Turbulent Open Channel Flow Downstream of a Drop Structure (하상단차 하류부 난류흐름 거동 수치모의)

  • Kim, Byung Joo;Paik, Joong Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.244-244
    • /
    • 2021
  • 난류흐름 거동은 지형이나 수공구조물과 같은 고체 경계면의 변화에 민감하게 반응하며 특징 또한 다양하다. 보나 여수로 등과 같은 단차 구조물을 통과하는 흐름은 구조물의 모서리 같은 흐름 경계면이 급변하는 지점에서는 흐름분리(flow separation)가 발생하는 것이 특징이다. 이러한 흐름분리로 인해 전단층이 발생하며 흐름 재순환(recirculation)이 구조물 하류부에 형성된다. 이 연구에서는 낙차공 형식의 단차 구조물 하류부에서의 흐름 거동을 이해하기 위해 CFD모델링을 통하여 계산된 3차원 유동장을 분석한다. 난류 모의는 하이브리드 LES(large-eddy simulation)/RANS 계산 기법인 IDDES(improved delayed detached-eddy simulation)기법을 적용한다. IDDES의 기본 모형으로는 k-ω SST모형과 Spalart-Allmaras모형을 이용하여 두 모형의 성능을 평가한다. 자유수면의 변동은 VoF(volume of fluid)기법을 이용하여 계산하며, 각 지배방정식은 최소의 수치분산을 유지하면서 수치해의 안정성을 확보할 수 있는 2차 정확도의 유한체적법을 이용하여 이산화하였다. 수치해석 결과는 레이놀즈수 23,400과 후르드수 0.22의 조건에서 기존에 계측된 자료와 비교하여 수치모형의 정확도를 평가하고 하상 단차 하류부에서의 흐름 거동 특성을 분석한다. 계산 결과는 공학적으로 널리 사용되는 RANS 수치모의에서 볼 수 없는 전단층과 난류구조의 동적 거동 특성과 이에 따른 레이놀즈 응력분포의 특성을 설명해준다.

  • PDF