• 제목/요약/키워드: 유동유속

Search Result 936, Processing Time 0.021 seconds

Study on the Surface Heat Transfer Around a Circular Secondary Jet in the Supersonic Flow (초음속 유동내 원형 2차분사 제트 주변에서의 표면 열전달 현상 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Cho, Hyung-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.47-53
    • /
    • 2007
  • Convective heat transfer coefficient was measured around a circular secondary jet ejected into the supersonic flow field. The wall temperature measurement around a injection nozzle was conducted using infra-red camera. The constant heat flux is applied to the wall around a secondary nozzle. According to jet to freestream momentum ratio, the injection flow penetrates into the supersonic flow field. The measured temperature is used to calculate the convective heat transfer coefficient.

방사성 폐기물 처분동굴 주변 지하수 유동에 대한 민감도 분석

  • 박주완;최희주;이명찬;김창락;조찬희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.866-871
    • /
    • 1995
  • 방사성 폐기물 처분장 주변에서의 지하수 유동에 대한 민감도 분석을 수행하여 안전성 평가측면에서 필요한 성능측도에 미치는 영향을 파악하였다. 각 암반충의 투수계수 및 공극률의 변화에 대한 지하수 유속과 수두의 민감도와 경제 조건을 변경함으로 인해 지하수 유동시간에 미치는 영향을 adjoint 민감도 분석법에 의해 살펴보았다. 민감도 분석 결과, 본 논문에서 고려된 처분부 지의 경우 해수에 접한 경계 면에서는 해수의 밀도를 고려한 경계조건을 사용하는 것이 지하수 유동이 없다고 가정하는 경계조건보다 약간 보수적임을 보여주었고, 투수계수 변화에 따른 지하 수두 및 Darcy 속도는 처분동굴이 위치한 암반의 투수계수 변화에 매우 민감하고 실제적으로 동굴에서 멀리 떨어진 바닥 암반층의 투수계수 변화에는 민감하지 않았다.

  • PDF

Separation of Magnetic/non-Magnetic Particles by an Electromagnetic Fluidized Bed (전자석 유동층에 의한 자성/비자성 입자의 분리)

  • 김용하;서인국
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • An electromagnetic fluidized bed was proposed for the continuous separation of magnetic particles from the fine a admixtures with nonHmagnetic particles. The effects of operating variables on the magnetic fraction in the separated p particles were examined, including superficial gas velocity, mixing fraction of magnetic particles (= 100-mixing fraction of n non-magnetic particles) in the admixture, and electric current supplied to the electwmagnet. It was found that the s separation was possible when a magnetic force formed by the electromagnets works on the magnetic particles over the hydrodynamic force caused by a gas stream for fluidizing the fine admixture.

  • PDF

Aerodynamic Analysis of Converging-Diverging Nozzle by changing in shape (Converging-Diverging Nozzle의 형상 변화에 따른 공력 해석)

  • Park, Cha-Ryeom;Park, Gyeong-Su
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.327-330
    • /
    • 2013
  • Converging-diverging 노즐은 시스템 내부 유동에 적용되는 속도면적 법칙을 통해, 아음속 유동을 초음속으로 만드는 장치이며, 항공기 엔진 등에서 추력을 얻기 위해 쓰인다. 이상기체, 등 엔트로피를 가정한 동일 입구 조건에서, 출구로 빠져나오는 유동의 속도는 오직 면적 비에만 관계한다. 그러나 실제현상에서는, 출구에서의 유속이 유동의 압축성 효과 및 벽면에서의 전단력 등으로 인해 노즐 형상마다 상이한 결과를 낳는다. 본 연구에서는 EDISON Simulation을 활용하여 다양한 노즐 형상에 따른 출구에서의 Mach number를 구하고, 각각의 결과로부터 경향성을 찾는다. 또, 계산 결과를 이론식을 통해 도출되는 결과와 비교한다.

  • PDF

A Cold model experiment on the thermal convection in the czochralski silicon single crystal growth process (저융점 금속을 사용한 초크랄스키 실리콘 단결정 성장 공정의 열유동 모사 실험)

  • 이상호;김민철;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • An experimental simulation on the flow in Czochralski melt using a cold model was carried out to obtain the velocities of fluid flow which affects the oxygen concentration of Czochralski crystal growing system. Low melting point Woods metal with similar Pr number to the silicon melt was adopted as a working fluid. Local flow velocities at numerous positions in the melt were simulataneously measured in three dimension using incorporated magnet probe. The measured velocity field showed a non-axisymmetric pattern dominated by natural convection. The analysis on the correlation between data set of temperatures simultaneously measured at two melt positions showed that the values of correlation coefficients were smaller than those of previous study on the small size of silicon melt and these phenomena are believed to occur because turbulent behavior becomes stronger in large size of the melt.

  • PDF

Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step (수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구)

  • 백병준;박복춘;김진택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1253-1261
    • /
    • 1993
  • Numerical analysis and measurements of the velocity and temperature distributions in buoyancy assisting laminar mixed convection flow over a vertically located, two-dimensional backward-facing step are reported. Laser-Doppler Velocimeter and Constant Temperature Anemometer operated in constant current were used to measure simultaneously the velocity and temperature distributions in the recirculation region downstream of the step. The reattachment length was measured by using flow visualization technique for different inlet velocities, wall temperatures and step heights. While the reattachment length $X_r$ increases as the inlet velocity or step height increase, it decreases as the buoyancy force increases, causing the size of the recirculation region to decrease. For the experimental range of $Gr_s$/$Re_{s}^{2}$$\times$$10^3$<17, a correlation equation for the reattachment length can be given by $X_{r}=1.05(2.13+0.021 Re_{s})exp$ $(-33.7_s^{-0.186}/Gr_{s}/Re_{s}^2).$ The Nusselt number is found to increase and the location of its maximum value moves closer to the step as the buoyancy force increases. The location of the maximum Nusselt number occurs downstream of the reattachment point, and distance between the reattachment point and the location of the maximum Nusselt mumber increases as the buoyancy force increases. Computational prediction agrees favorably well with measured results.

A Convergent Study on Flow Analysis near Trailer due to Shape of Wind Deflector (윈드 디플렉터 형상에 따른 트레일러 주위의 유동해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.159-163
    • /
    • 2020
  • In this study, the flow analyses around according to the existence or non- existence of the trailer's deflector and the shapes were carried out. In the absence of a deflector, the kinetic energy of the turbulence behind the container also generates higher kinetic energy in a wider area than in the presence of a deflector, which adversely affects the vehicle's driving performance. As a trailer's wind deflector-free model has unstable flow rates around the trailer and high kinetic energy of turbulence than a model with a deflector, it can be thought that the increase of fuel economy can be expected by installing a deflector in the trailer. By applying the study result on flow analysis near trailer due to shape of wind deflector, this study is seen to be suitable for the aesthetic convergence.

Size and Rising Velocity of Liquid Drops in Liquid-Liquid Fluidized-Bed Extractors (유동층 액-액 추출기에서 액적의 크기 및 상승속도)

  • Jung, Sung-Hyun;Kim, Jae-Han;Kang, Tae-Gyu;Kang, Yong;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Characteristics of size, rising velocity and distribution of liquid drops have been investigated in a immiscible liquid-liquid fluidized-bed whose diameter was 0.102 m and 2.5 m in height. Effects of velocities of dispersed (0~0.04 m/s) and continuous (0.02~0.14 m/s) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties in the extractor have been determined. The resultant flow behavior of liquid drops became more complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid drops depended strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. However, the size of liquid drop exhibited a local maximum with increasing continuous liquid velocity. The size and rising velocity of liquid drops have been well correlated in terms of operating parameters.

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

An Experimental Study on Convection Heat Transfer in an Oscillating Flow of a Heater Tube for Stirling Cycle Machines (스터링 사이클기기용 가열기 원관내부 왕복유동에서의 열전달에 관한 실험적 연구)

  • 강병하;이건태;이춘식;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1547-1555
    • /
    • 1993
  • An experimental study on convection heat transfer characteristics from a heated tube to an oscillating flow has been carried out, . This problem is of particular interest in the design of heat exchangers in Stirling cycle machines. Experimental system has been developed to measure temporal variations of temperature inside a heater tube during oscillating modes in a Stirling cycle machine. The dependence of temperature distributions and heat transfer rates on the oscillating frequency as well as the swept volume ratio and the mean pressure of a Stirling cycle machine is investigated in detail. The experimental results indicate that the measured temporal variations of temperature become nearly sinusoidal. The amplitude of temperature variation in the core of the tube is much more substantial than that near the tube wall, whereas the reverse is true for pulsating flows. It is also found that the heat transfer rate is increased significantly as the oscillating frequency or oscillating amplitude or the mean pressure in a tube is increased.