• Title/Summary/Keyword: 유동유기소음

Search Result 28, Processing Time 0.022 seconds

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

An Analysis of Flow and Noise for Vacuum Cleaner Centrifugal Fan (진공청소기 원심팬의 유동과 소음 해석)

  • 전완호;이덕주;유기완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.130-135
    • /
    • 1995
  • 본 연구에서는 30000rpm으로 회전하는 진공청소기 원심팬의 유동장을 임펠러, 디퓨저, 케이싱을 모두 고려하여 해석하였다. 또한 삼차원으로 배출되는 출구를 간단한 sink 패널로 모델하여 출구의 효과를 충분히 고려하였다. 해석된 유동장 자료를 이용하여 먼 거리에서의 음압을 예측하였다. 예측된 음압자료는 FFT를 이용하여 측정된 값과 주파수 영역에서 비교하였다. 또한 진공청소기 원심팬의 측정자료에서 보이는 광역소음특성이 임펠러에서 흘려지는 후류와류의 교란에 의한 임펠러와 디퓨저 깃의 비정상 힘이 주된 원인임을 밝혔다.

  • PDF

Experimental Study on the Flow-Induced Vibration of Inclined Circular Cylinders in Uniform Flow (균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성연구)

  • Chung, Tae-Young;Hong, Sup;Moon, Seok-Jun;Ham, Il-Bae;Lee, Hun-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.265-270
    • /
    • 1994
  • 본 연구에서는 케비테이션 터널에서의 경사진 원형실린더의 유동유기진동시험을 통하여 경사각에 따른 유동유기진동 특성규명과 아울러 유체력 계수들의 실험적 산정을 시도하였으며 도출된 주요한 결론은 다음과 같다. 경사각이 20.deg. 이상되면 마찰저항력에 비해 수직항력이 지배적이 되며, 이때 수직항력계수는 여러 관찰자에 의해 관측된 범위의 값(1.7-2.0)을 갖는다. 또한, 양력계수 $C_{L,rms}$은 유속범위 4$_{n}$D<8의 범위에서 lock-in 현상에 의해 큰 값을 갖게 되며, 경사각이 커질수록 큰 값을 갖는다. 경사각이 30.deg.인 경우 최대값은 약 0.9, 20.deg.인 경우 0.4로 계측되었다.

  • PDF

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

Characterization of surface pressure field inducing Flow induced vibration/Acoustic induced vibration due to orifice flow inside pipes (배관 내부 오리피스 유동에 의한 유동 유기 진동/음향 유기 진동 유발 표면압력장 특성에 대한 고찰)

  • Inseop Choi;Sangheon Lee;Cheolung Cheong;Myengkab Seo;Sangkyung Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Recently, the operating speed of pressure devices is increased for high performance. It lead to the increase of flow rate. Consequently, the results in the high relative contribution of flow borne noise to the noise from pipe. Analyzing the characteristics of flow-borne noise is essential for evaluating noise performance during the design stage of the piping system. Therefore, in this paper, the noise generation mechanism and transfer characteristic was numerically investigated. The wall pressure induced by the fluid moving through the orifice was predicted using the compressible Large Eddy Simulation (LES). The Wavenumber-Frequency Analysis (WFA) was employed to decompose the wall pressure into incompressible and compressible component, which are to cause Fluid Induced Vibration (FIV) and Acoustic Induced Vibration (AIV). The propagation and contribution characteristics were analyzed using the separated incompressible and compressible wall pressure components. Additionally, the correlation between these pressure components and the internal flow within the piping was investigated through flow field analysis, which elucidated the mechanisms and propagation characteristics of flow-induced noise. From these results, it was confirmed that the contribution of the incompressible wall pressure component was high near the noise source and that the contribution of the compressible wall pressure component increased as it propagated long distances upstream and downstream direction of the noise source.

Numerical simulation of flow and acoustic field interacting between a vortex ring and a rigid sphere (고리와와 강체구의 상호작용에 의한 유동장 및 음향장 수치해석)

  • 유기완;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.185-190
    • /
    • 1994
  • 본 연구에서는 와선 지배방정식의 계산을 위해 쌍곡선 blending 함수를 이용하여 와선운동의 정확한 계산을 할 수 있었고 이 방법을 통하여 임의로 거동하는 와선이 강체구와 간섭하는 경우의 3차원 유동장에 대한 해석과 이에 의한 쌍극 음향장 해석을 수행하였다. 경계치 적분방법을 통해 강체구에 작용하는 힘을 계산할 수 있었고 이 방법은 물체의 형태에 구애 받지 않으므로 임의 형상에 대해서도 유동장과 음향장 계산이 가능하다고 본다.

  • PDF

Effect of the Inner Material and Pipe Geometry on the Flow and Induced Radiated Noise (파이프 내 흡음재 및 형상에 따른 유동 및 방사소음에 대한 수치해석적 연구)

  • Lee, Su-Jeong;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • Noise and vibration, which occur in a pipe, are usually caused by the interaction between the turbulent flow and nearby wall. Although it can be estimated by a simple case of expanded pipes having complex turbulent flow, the radiated noise is highly dependent upon the size, shape, and thickness of the given model. In addition, the radiated noise propagates and has serious interference and destabilization effects on the surrounding systems, which can lead to fatigue fracture and failure. This study took advantage of the variety of commercial programs, such as FLUENT (flow solver), NASTRAN (dynamic motion solver of complex structures) and VIRTUAL LAB (radiated noise solver) based on the boundary element method (BEM), to understand the underlying physics of flow noise. The expanded pipe has separation and a high pressure drop because of the abrupt change in the cross-section. Based on the radiated noise calculations, the noise level was reduced to around 20 dB in the range of 100-500 Hz.

Experimental Study on the Flow-Induced Vibration of Inclinced Circular Cylinders in Uniform Flow (균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성 연구)

  • Jung, Tae-Young;Hong, Sup;Moon, Seok-Jun;Ham, Il-Bae;Lee, Hun-Gon
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.303-311
    • /
    • 1995
  • Tests on flow-induced vibration of inclined cylinders in uniform flow were performed in the cavitation tunnel at the Korea Instituteof Machinery and Metals. The test program was intended to investigate flow-induced vibration characteristic of the cylinders with three different inclined angles of 10$^\circ$, 20$^\circ$ and 30$^\circ$ and to estimate the fluid force coefficients acting on the cylinders. Important observations are as follows: 1) Numal drag is dominant compared with viscous drag for the inclined angle over 20.deg. and it has the value from 1.7 to 2.0 as was observed by other researchers. 2) Lift force coefficient has large value at the lock-in range determined by 4$\Theta/f_nD$<8. Measured maximum lift force coefficients at the inclined angle of 30.$^\circ$ and 20$^\circ$ were 0.9 and 0.4 respectively.

  • PDF

Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis (파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구)

  • Ku, Garam;Lee, Songjune;Kim, Kuksu;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.314-320
    • /
    • 2017
  • A pressure relief valve is generally used to prevent piping systems from being broken due to high pressure gas flows. However, the sudden pressure drop caused by the pressure relief valve produces high acoustic energy which propagates in the form of compressible acoustic waves in the pipe and sometimes causes severe vibration of the pipe structure, thereby resulting in its failure. In this study, internal aerodynamic noise due to valve flow is estimated for a simple contraction-expansion pipe by combining the LES (Large-Eddy Simulation) technique with the wavenumber-frequency analysis, which allows the decomposition of fluctuating pressure into incompressible hydrodynamic pressure and compressible acoustic pressure. In order to increase the convergence, the steady Reynolds-Averaged Navier-Stokes equations are numerically solved. And then, for the unsteady flow analysis with high accuracy, the unsteady LES is performed with the steady result as the initial value. The wavenumber-frequency analysis is finally performed using the unsteady flow simulation results. The wavenumber-frequency analysis is shown to separate the compressible pressure fluctuation in the flow field from the incompressible one. This result can provide the accurate information for the source causing so-called acoustic-induced-vibration of a piping system.