• Title/Summary/Keyword: 유동안정성

Search Result 605, Processing Time 0.028 seconds

The Effects of Rudder Size on Characteristics of Fluid Flow around Ship's Stern in Manoeuvring Motion (타의 크기가 조종운동시 선미 유동 특성에 미치는 영향)

  • 손경호;김용민
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • It is well known that, especially in the case of full-bodied ship, the course stability may become the severest among 4 items of requirement in Interim Standards for Ship Manoeuvrability adopted by IMO in 1993. The purpose of this study is to find some ideas for characteristics of fluid flow pattern around ship's stern in manoeuvring motion with parameter of changes in rudder size. We carried out two kinds of model experiment in obliquely running condition at circulating water channel. One is measurement on straightening effect of incoming flow to rudder and the other is experiment on flow visualization around the gap between rudder and stern-bottom. We discuss the correlation between the flow characteristics around ship's stem and flow straightening effect at rudder from the viewpoint of course stability. As a result, it is clarified that the gap between rudder and stern-bottom plays an important role in course stability of full-bodied ship. It is pointed out that there is quite a possibility of bad course stability as the gap between rudder and stern-bottom decreases.

  • PDF

Stability and Processing Characteristics of Microencapsulated Squid Liver Oil by Fluidized Bed Coating (오징어 간유 미세캡슐의 유동층 코팅에 따른 품질 특성)

  • Hwang, Sung-Hee;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.621-625
    • /
    • 2008
  • Squid oil is an abundant source of polyunsaturated fatty acids. This is particularly true for eicosapentaenoic acid and docosahexaenoic acid. The principal objective of this study was to extend the stability and improve the process aptitude of squid liver oil. Fluidized bed coatings were employed for coating with microencapsulated oil. The efficiency of the fluidized bed coating of the microencapsulated powder was over 90%. The apparent density with zein-DP was 0.6 g/mL, thereby indicating that flow ability had been improved as the result of an increase in specific gravity. The solubility of artificial gastric and enteric fluids with HPMC-FCC was 59.9 and 0%, respectively, whereas with zein-DP solubility was 0 and 31.0%, respectively. Polyunsaturated fatty acid retention results demonstrated that zein-DP coating was higher than HPMC-FCC, followed by the microencapsulated squid liver oil method. These results demonstrated that the application of microencapsulation and fluidized bed micro-coating techniques improved the stability and processing compatibility of squid liver oil.

Stability Analysis of Composite Material Pipes Conveying Fluid (유체유동에 의한 복합재료 파이프의 안정성 해석)

  • 최재운;송오섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.314-321
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is Investigated. The theory of than walled beams is applied and transverse shear. rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transformed to an eigenvlaue problem which provides the Information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Variation of critical velocity of fluid with fiber angles and mass patios of fluid to pipe Including fluid is investigated.

  • PDF

Stability Analysis of Multi-wall Carbon Nanotubes Conveying Fluid (유체유동에 의한 다중벽 탄소나노튜브의 안정성 해석)

  • Song, Oh-Seop;Yun, Kyung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.593-603
    • /
    • 2010
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia and van der Waals forces between two walls are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

Effects of Crack on Stability of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

Evaluation of Stability about Lateral Soil Movement of Bridge Abutment Constructed on Soft Ground (연약지반 위에 시공되는 교대의 측방유동에 대한 안정성 평가)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Jeon, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper stability about lateral soil movement of bridge abutment constructed on the soft ground, reinforced with the sand compaction pile (SCP) and the preconsolidaton methods, was evaluated by using the centrifuge testing facility which stress conditions in field could be reconstructed in the laboratory. The layouts of model such as ground condition, sand compaction piles and abutment was determined on the basis of similitude law with the reduced scale of 1/200. Construction sequences of installing SCP, preparing reclaimed ground, preconsolidating ground and building the piled bridge abutment were reconstructed during centrifuge modelling and measurements of movement were followed in each sequence. From analyzing the results of measuring movements of the model abutment and the ground, measured lateral movement of model abutment was found to be within the allowable value so that stability of abutment against lateral sliding was secured.

  • PDF

Vibration Stability Analysis of Multi wall Carbon Nanotubes Considering Conveying Fluid Effect (유체유동효과를 고려한 다중벽 탄소나노튜브의 진동 및 안정성 해석)

  • Yun, Kyung-Jae;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.219-224
    • /
    • 2012
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multiwall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

Stability Analysis of Axially Moving Simply Supported Pipe Conveying Fluid (축방향으로 이송되는 유체유동 단순지지 파이프의 안정성 해석)

  • Son, In-Soo;Hur, Kwan-Do;Lee, Sang-Pill;Cho, Jeong-Rae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.407-412
    • /
    • 2012
  • The dynamic instability and natural frequency of an axially moving pipe conveying fluid are investigated. Thus, the effects of fluid velocity and moving speed on the stability of the system are studied. The governing equation of motion of the moving pipe conveying fluid is derived from the extended Hamilton's principle. The eigenvalues are investigated for the pipe system via the Galerkin method under the simple support boundary. Numerical examples show the effects of the fluid velocity and moving speed on the stability of system. Moreover, the lowest critical moving speeds for the simply supported ends have been presented.

A Three Dimensional Thermohydrodynamic Analysis of Large Tilting Pad Journal Bearings (대형 틸팅패드 저어널 베어링에 대한 3차원 열유체해석)

  • 하현천;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.13-18
    • /
    • 1992
  • 대형 틸팅패드 저어널베어링은 고속안정성 특성이 우수한 베어링으로서 시스템의 안정성이 매우 중요시되는 터빈발전기 등 대형 고속 회전기계에 많이 사용되고 있다. 그런데 이들 대형 저어널베어링에서는 유막의 온도상승이 매우 많고, 유체의 흐름이 거의 난류영역에 이르기 때문에 베어링의 운전특성을 정확하게 예측하기가 어려운 실정이다. Hopf & Schuler는 대형 틸팅패드 저어널베어링에 대한 실험적 연구에서 유동상태에 따라 베어링의 온도분포가 서로 달라진다고 발표하였다. 대형 틸팅패드 저어널베어링은 구조적으로 유동상태가 복잡할 뿐만 아니라 계산과정도 까다로운 편이어서 온도상승과 난류를 고려하여 엄밀하게 운전특성을 예측한 연구는 거의 없다. 따라서 본 연구에서는 대형 틸팅패드 저어널베어리으이 운전특성을 보다 엄밀하게 예측하기 위하여 3차원 적으로 유막의 점도변화 및 패드에서의 열전달을 고려하고, 와점성계수를 이용한 난류윤활이론을 사용하여 유막의 온도상승 및 난류가 베어링의 온도분포, 부하능력, 마찰손실 등의 운전특성에 미치는 영햐을 보다 엄밀하게 제시하고자 한다.

  • PDF