• Title/Summary/Keyword: 유도전동기

Search Result 2,069, Processing Time 0.028 seconds

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

The phase angle driving adaptive control of single-induction motor using one-chip micro controller (원칩 마이컴을 이용한 단상유도전동기의 위상각 구동 적응제어)

  • 이형상;김정도;김이경;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.675-679
    • /
    • 1992
  • In industry, the speed control of single-phase induction motor in domestic use is generally controlled by a simple ON-OFF or PID control method. However, in this case, in order to have a good speed regulating characteristics, itself should be modified in accordance with the optimum PID factors which are varied each time operating speed changes. Shortening the development time and saving the cost which are needed to modify the controller is a major problem to be solved now in industry. In order to alleviate the above difficulties, it is proposed to apply adaptive control technique using MRFAC(Model Reference Following Adaptive Control) for the speed control of single-phase induction motor which has scarcely been studied. In this paper, the above speed control technique is achieved using MCS-96 one chip micro controller with a good speed control characteristics and it is expetted to open a wide application field in the speed control of single-phase induction motor in the future.

  • PDF

Design for Weight Reduction of the Linear induction Motor for MAGLEV (도시형 자기부상열차용 선형유도전동기의 경량화 설계)

  • Park, Seung-Chan;Lee, Won-Min;Kim, Kyung-Min;Kim, Jung-Cheol;Park, Yeong-Ho;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1460-1465
    • /
    • 2007
  • In this paper, the conventional linear induction motor(LIM) used in propelling the MAGLEV in Korea is redesigned in order to reduce its weight. The specifications of the newly designed model for base speed, acceleration, rated thrust and maximum output is respectively 45km/h, 4.0km/h/sec, 5,200[N] and 65 [kW]. Weight reduction effect of the LIM according to the change of pole number from 8 to 6 is shown. Equivalent circuit analysis considering end effect and finite element method are used for the analysis of the redesigned model. Finally the weight reduction ratio of the newly designed LIM to the conventional model, thrust, attraction force, line current, temperature rise, flux density distribution are presented.

  • PDF

추정된 절삭력 신호를 이용한 선삭력 제어

  • 허건수;김재옥
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.173-179
    • /
    • 2000
  • While a cutting tool is machining a workpiece at various cutting depth, the feedrate is usually selected based on the maximum depth of cut. Even if this selection can avoid power saturation or tool breakage, it is very conservative compared to the capacity of the machine tools and can reduce the productivity significantly. Many adaptive control techniques that can adjust the feedrate to maintain the constant cutting force have been reported. However, these controllers are not very widely used in manufacturing industry because of the limitations in measuring the cutting force signals. In this paper, turning force control systems based on the estimated cutting force signals are proposed. A synthesized cutting force monitor is introduced to estimate the cutting force as accurately as a dynamometer does. Three control strategies of PI, adaptive and fuzzy logic controllers are applied to investigate the feasibility of utilizing the estimated cutting force fur turning force control. The experimental results demonstrate that the proposed systems can be easily realized in CNC lathe with requiring little additional hardware.

  • PDF

Speed Control of Induction Motor Systems by a Digital Redesign Method (디지털 재설계법에 의한 유도 전동기 시스템의 속도제어)

  • 이동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.27-38
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.

  • PDF

Optimal Stator Slot Design of Inverter-Fed Induction Motor for Reduction of Core and Winding Losses (손실 저감을 위한 인버터 구동 유도 전동기의 고정자 슬롯 형상 최적화)

  • Kim, Jae-Woo;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.86-88
    • /
    • 2004
  • In this paper, optimal stator slot shape of 3-phase inverter-fed induction motor is designed to reduce stator core and winding losses. For the analysis, the F.E.M on 1 phase band periodic condition in stator is coupled with harmonic equivalent circuit. For the optimal design, the conjugate gradient method is used as an optimizing algorithm. The stator core and winding losses are reduced by the design method. The results are verified by those of the time-step finite element analysis.

  • PDF

Evaluation of Insulation Diagnostic Test Reliability for Stator Winding of High Voltage Induction Motor (고압유도전동기 절연특성시험의 신뢰도 평가)

  • Lee, Kwang-Ho;Kim, Hyun-Il;Kwak, Hee-Jin;Oh, Bong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.46-49
    • /
    • 2004
  • This test was performed to assess the correlation between insulation diagnostic tests and breakdown voltage strength of the stator winding of 6.6kV class induction motor in insulation deterioration condition which have been in service for 5 years after being installed in 1998. The insulation diagnostic tests include resistance, polarization index(P.I), dissipation factor(${\Delta}tan{\delta}$). maximum partial discharges(Qmax) and AC breakdown test. we evaluated the correlation between insulation diagnostic test and AC breakdown test for stator winding of high voltage induction motor.

  • PDF

A Study on the Improvement of Starting Characteristics for Single Phase Induction Motor (단상유도전동기 기동특성 개선에 관한 연구)

  • Lim, Yang-Su;Back, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.284-286
    • /
    • 1995
  • The most common for starting a single phase induction motor is to install a starting condenser and a centrifugal switch in series with the auxiliary winding. Though this method is simple, life of single phase induction motor is short because of malfunction of a starting condenser and a centrifugal switch and efficiency improvement has limitation. In this paper, the starting characteristics of SPIM is improved by voltage and phase control strategy of auxiliary winding in removing a starting condenser and a centrifugal switch. Finally, the excellent starting performance of SPIM is shown through simulation and experimental results.

  • PDF

Characteristic Analysis and Optimum Design for Efficiency Improvement of the Single-Phase Permanent-Split Condenser Motor (콘덴서 구동형 단상유도전동기의 특성해석 및 효율개선을 위한 최적설계)

  • Im, Dal-Ho;Hong, Jung-Pyo;Yoon, Sang-Baeck;Son, Byung-Ook;Kim, Ki-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.6-8
    • /
    • 1995
  • This paper describes the characteristic- analysis and tile optimum design of the single-phase permanent-split condenser motor. The equivalent circuit is constructed by the symmetrical coordinate method and proved its validity by comparing with the experimental data. Then, the numerical optimization technique is applied to improve the efficiency of the motor.

  • PDF

Current Control of Induction Motor using Neural Networks (신경 회로망을 이용한 유도 전동기의 전류제어)

  • Park, Young-Soo;Seo, Ho-Joon;Kim, Seong-Hwan;Seo, Sam-Jun;Kim, Dong-Slk;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.66-68
    • /
    • 1997
  • In this paper, our interest is the identification and control of nonlinear dynamic plant, induction motor, by using neural networks. We usually use vector control in the induction motor such as in the DC motor. When we go over the inputs of voltage source invertor, we can find that torque current and flux current couple each other in the induction motor. Before putting control inputs in the system, we should remove the coupling terms which we already know from them. But we should consider that cross coupling terms have time-varying variables. In this paper, we identified the parameter of induction motor by using neural networks and designed the controller with identified parameters. Through this procedure we obtained compensated inputs which are decoupled each other. Using induction motor currents control, we can make the d axis current hold constant value and control the q axis current at the same time.

  • PDF