• Title/Summary/Keyword: 유도용해로

Search Result 282, Processing Time 0.018 seconds

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.

Enhancement of Protein Aggregate Clearance in Huntington's Disease Model viaCRISPR/dCas9 Activation of NAGK and Reln Genes (CRISPR/dCas9을 통한 NAGK 및 Reln 유전자 활성화에 의한 헌팅턴병 모델에서 단백질 응집체 제거 촉진)

  • Diyah Fatimah Oktaviani;Raju Dash;Sarmin Ummey Habiba;Ho Jin Choi;Yeasmin Akter Munni;Dae-Hyun Seog;Maria Dyah Nur Meinita;Il Soo Moon
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.609-619
    • /
    • 2024
  • Neurodegenerative diseases are marked by the accumulation of toxic misfolded proteins in neurons. Therefore, strategies for the effective prevention and clearance of aggregates are crucial for therapeutic interventions. Cytoplasmic dynein plays a crucial role in the clearance of aggregates by transporting them to the cell center, where lysosomes are enriched and the aggregates undergo extensive autophagic degradation. Previously, we reported evidence for the activation of dynein by N-acetylglucosamine kinase (NAGK) and Reln. In the present study, we explored the effects of NAGK and Reln upregulation on the clearance of aggregates. To upregulate NAGK and Reln genes in HEK293T cells (a human embryonic kidney cell line), CRISPR/dCas9 activation systems (CASs) were used with specific plasmids encoding target-specific 20 nt guide RNA. The effects of this genetic modulation were analyzed in Huntington's disease cellular models, including HEK293T cells and primary mouse cortical cells, where external mutant huntingtin (mHtt, Q74) aggregates were induced. The results showed that the CAS activation of NAGK or Reln, or their combination, significantly reduced the proportion of cells with Q74 aggregates (aggresomes). This effect was reversed by Ciliobrevin D (a dynein inhibitor) and chloroquine (an autophagy inhibitor), indicating the role of dynein-mediated autophagy in aggregate clearance. These findings provide the basis for therapeutic strategies aimed at enhancing neuronal health through targeted gene activation.