• Title/Summary/Keyword: 유기 섬유

Search Result 417, Processing Time 0.027 seconds

Development of Non-contacted Coating Machine for Textile Subsidiary Materials (섬유 부자재용 무접점 코팅설비 개발)

  • Ko, Eun-Hee;Woo, Jong-Hyoung;Son, Eun-Joung;Lee, Ki-Yeul
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.95-95
    • /
    • 2012
  • 기존의 섬유부자재 생산은 피도물의 접점(고리자국)으로 핀홀(pine-hole)에 녹의 발생하여 제품고급화가 어렵고 작업 시 분진 발생 및 유기물질 배출로 열악한 실정이다. 국내 생산방식은 대부분 위와 같은 방식으로 생산하고 있으나 이는 불량률이 높고 열효율이 떨어지는 단점이 있다. 기존의 저가제품은 중국 및 후발국가의 추격으로 세계시장에서 경쟁력을 잃어가고 있으며 선진국의 경우 섬유부자재의 고급화를 위한 무접점 대형코팅 설비 생산 및 연구개발을 하고 있는 실정이다. 이에 본 연구에서는 무접점 코팅설비의 개발로 피도물에 접점이 없어 녹발생의 원인인 핀홀이 근본적으로 발생하지 않으며, 일괄생산체제를 도입하여 기존의 작업방법 대비 생산성이 향상되고 불량률 및 에너지사용이 감소되며, 또한 원천적으로 분진 및 유기용제 등의 유해물질 배출이 없는 기술을 확보하고자 한다. 개발된 장비의 평가 및 실제 생산현장에서 요구되는 성능을 반영하기 위해 기존 생산설비를 조사하였고, 기존 작업환경에 따른 불량률 및 생산성을 조사하였다. 새로 개발되는 무접점 코팅설비는 기존의 문제점이 보완되며, 에너지 효율 향상 및 작업환경 개선된 One-stop 공정으로 설계하였으며 그 특징은 아래와 같다. 도료 코팅을 위한 파우더 공급 및 제거 공정의 단일화로 생산성을 향상 시키면서 기존보다 분진발생이 거의 없는 도입부 개발 및 밀폐형 코팅부 도입을 통하여 불필요한 열원 낭비를 최소화 시킬 예정이다. 향후 개발된 각 단위 유닛의 최적화를 통한 생산성 향상 및 One-stop 공정에 따른 열효율 개선 및 에너지 사용 절감 효과를 알아보고 피드백하여 최종 개발품에 적용할 예정이다.

  • PDF

Liquid Phase Adsorption of Activated Carbon Fibers (활성탄소섬유의 액상흡착)

  • Moon, Dong Cheul;Kim, Chang Soo;Park, Il Yeong;Kim, Mi Ran;Hong, Seung Soo;Lee, Kwang Ho;Lee, Chang Gi
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.573-583
    • /
    • 2000
  • Activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscous rayon and cotton. Their adsorption performances of phenol and methylene blue in aqueous phase were evaluated through their adsorption isotherms, adsorption rates and breakthrough curves. The two adsorbates showed type I adsorption isotherm on ACFs. Adsorption rates to ACFs were 100 fold faster than to GAC. The effective diffusion coefficients of the adsorbates in ACFs were twenty fold greater than in GAC. The ACFs removed completely ten organic pollutants from a prepared water specimens through the 2nd column of a natural filtration method where 50 L of the water samples were treated.

  • PDF

Evaluation of Nutritional Characteristics of Platycodon grandiflorum Seeds (도라지 종자의 영양학적 특성 평가)

  • Kim, Yangji;Woo, Hyeryeon;Imm, Jee-Young;Kim, Seok Joong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.478-484
    • /
    • 2018
  • In this study, proximate composition, crude fiber, reducing sugar, free sugars, organic acids, minerals and amino acids of Platycodon grandiflorum seeds were analyzed to evaluate its nutritional value. Moisture, crude protein, crude fat, crude ash and carbohydrate contents of seeds were 6.97, 26.05, 27.46, 3.78 and 35.74%, respectively. Crude fiber of 6.31% and reducing sugars of 1.54% were also determined. Sucrose(1,661 mg/100 g) and lactic acid(1,224 mg/100 g) were most abundant free sugar and organic acid, respectively. Both phosphorus and potassium were main minerals that contained more than 700 mg in 100 g seeds. Amino acids analysis of 100 g seeds showed that glutamic acid(3.45 g), arginine(2.51 g), aspartic acid(1.66 g), leucine(1.29 g), lysine(1.10 g), alanine(1.05 g) and glycine(1.04 g) were abundantly contained in order, while others were less than 1 g.

A Study on the Non-combustible Properties of High-density Fiber Cement Composites Mixed with Hemp Fibers (마 섬유 혼입에 따른 고밀도 섬유 시멘트 복합체의 불연 특성 연구)

  • Jang, Kyong-Pil;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2022
  • The function of reinforcing fibers used in building materials is to maintain resistance to bending loads and to function for cracking caused by drying shrinkage. High-density fiber-cement composites are mainly used for linear plates and are used to increase bending resistance. Therefore, tensile properties, bonding strength with cement hydrate, alkali resistance, and the like are required. Recently, as the non-combustible performance has been strengthened, a function to minimize the occurrence of sparks during high-temperature heating has been added. Therefore, the use of organic fibers is limited. In this study, a study was conducted to replace polypropylene used as reinforcing fiber with hemp fiber with excellent heat resistance. Hemp fibers have excellent heat resistance, good affinity with cement, and excellent alkali resistance. Based on the total volume of polypropylene fibers used in the existing formulation, the non-combustible performance was compared and evaluated by using hemp fibers instead of the polypropylene fibers, and basic physical properties such as flexural strength were tested. As a result of conducting a non-combustibility and physical property test using hemp fibers with a fiber length of 7 mm using 2 % and 3 % by weight, it was found that there is no remaining time of the flame, and the flexural strength can be secured at 95 % level of the existing polypropylene fiber.

Evaluation on Mechanical Properties of Organic of Fiber Reinforced Concrete Using Macro Forta Fiber (매크로 포타 섬유를 사용한 섬유 보강 콘크리트의 역학적 특성 평가)

  • Ryu, Hwa-Sung;Kim, Deuck-Mo;Shin, Sang-Heon;Ryu, Il-Hwan;Joe, Ji-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.321-329
    • /
    • 2017
  • Concrete is a semi-brittle material, so its compressive strength is high but its tensile strength is low. The use of fiber-reinforced concrete to improve the disadvantages of such concrete can be an effective way to toughen effective toughness, and the performance is improved by using steel fiber reinforced concrete for structures that are vulnerable to bending forces. However, alternative materials are required due to corrosion of steel fiber and lowering of workability. The purpose of this study is to evaluate the availability of replacing steel fiber reinforced concrete by evaluating physical properties, mechanical properties and drying shrinkage properties of concrete using macro forta fiber with excellent diffusibility. Experimental results show that the macro forta fiber has better fluidity and mechanical performance than the steel fiber reinforced concrete. It was also confirmed that the crack resistance of concrete using Macro Forta fiber is effective in improving structural cracking and drying shrinkage resistance compared to steel fiber reinforced concrete.

Synthesis and Characteristics of Zirconium Hybridized Polycarbosilane (지르코늄 혼성 폴리카르보실란의 합성 및 특성)

  • Kang, Phil-Hyun;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.791-797
    • /
    • 1998
  • As organosilicon based preceramic polymer, new zirconium hybridized polycarbosilane having a good thermal stability and forming stage was synthesized. Oxidative stability(infusibility) and mechanical property of this polymer during the thermal curing process and heat treatment were examined. Prepared zirconium hybridized polycarbisilane (PZC) was spun into fiber at $250{\sim}270^{\circ}C$. Spinnability of PZC polymer having a molecular weight of 1000 to 1400 and having a dispersity<2 was good. The thermal curing process of the PZC fiber was done at 140 to $200^{\circ}C$. The mechanical properties of PZC ceramic fiber depend on curing temperature of PZC as precursor of PZC ceramic fiber. It was found that the optimum curing temperature was variable with the molecular weight of PZC. The cured PZC fiber need constant gel fraction to have good tensile strength.

  • PDF

A Study on Dissolution Characteristic of Sea-Islands composite type Polyester Ultramicro-Nano Fiber (해도형 울트라마이크로-나노급 폴리에스테르 섬유의 용출 특성)

  • Jeong, Cheon-Hee;Min, Mun-Hong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.104-104
    • /
    • 2011
  • 섬유가 가늘어지면 굽힘 강성이 저하되고 비표면적이 증가하는 등의 많은 특징을 발휘한다. 특히 폴리에스테르 극세사는 실크와 같은 외관, 유연한 태 등의 감각적으로 우수한 특성을 가지므로 제품의 태에 대한 질적 향상을 요구하는 소비자의 욕구와 맞아떨어져 다양한 용도로 전개되고 있다. 초극세 섬유를 제조하는 방법은 통상적으로 멜트블로운법, 플래쉬법, 전기방사법 그리고 해도형 복합방사법의 4가지로 분류된다. 그중 해도형 복합방사법은 가장 안정적인 방법으로 PET기준으로 0.01데니어 급까지 상용화가 되어 있다. 해도형 복합섬유의 개발에 있어서 중요한 것 중에 하나가 해성분 폴리머의 용출기술이다. 초극세화를 목적으로 해성분인 변성폴리에스테르를 제거시키기 위해서 실시되는 알칼리(NaOH)에 의한 감량공정은 그 처리조건에 따라서 초극세사로 잔존해야하는 도성분의 정규 폴리에스테르까지 손상시킬 수 있기 때문에 균일한 용출조건의 확립은 매우 중요하다. 그러나 초극세화가 진행될수록 알칼리가 필라멘트의 가운데 영역까지 균일하게 침투하기가 어려우며 감량된 도성분도 비표면적이 증가하기 때문에, 해성분의 균일한 용출 및 감량을 위한 안정적인 조건을 선정하기가 어렵다. 따라서 본 연구에서는 울트라마이크로-나노급(800nm) 해도형 폴리에스테르 섬유를 이용하여 해성분 용출공정에서 정규 폴리에스테르를 손상시킬 수 있는 알칼리 감량 조건을 완화시키면서 기존과 동일한 감량 효과를 얻을 수 있는 용출 공정을 확립하고자 한다. 이를 위하여 유기산을 이용한 전처리 조건 및 알칼리 감량공정에서 NaOH의 농도, 처리시간, 처리온도의 변화가 울트라마이크로-나노급 해도형 섬유의 용출에 미치는 영향에 대하여 검토하였다.

  • PDF

Preparation of dietary fiber sources using apple pomace and soymilk residue (두유박과 사과쥬스박을 이용한 식이섬유원의 제조)

  • Hong, Jai-Sik;Kim, Myung-Kon;Yoon, Sook;Ryu, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.36 no.2
    • /
    • pp.73-79
    • /
    • 1993
  • Apple pomace and soymilk residue which have 36.3% and 20.2% of neutral detergent fiber, respectively, were evaluated as potential dietary fiber supplement. Apple pomace showed strong functional properties as source of dietary fiber when Created with water, and n-hexane continually. The neutral detergent fiber content of treated apple pomace was 60.9% and holding capacities were 11.3g water/g and 2.01g fat/g. Canon exchange capacity was 65.0meq./100g. Soymilk residue showed good functional properties as source of dietary fiber when treated continually with water, n-hexane, acid and alkali. The neutral detergent fiber content of treated soymilk residue was 52.7% and holding capacities were 10.2g water/g and 1.52g fat/g. Canon exchange capacity was 63.7meq./100g. The color of treated dietary fiber sources were slightly shifted to darkness.

  • PDF

A Study on the Development of Sleep Monitoring Smart Wear based on Fiber Sensor for the Management of Sleep Apnea (수면 무호흡증 관리를 위한 섬유센서 기반의 슬립 모니터링 스마트 웨어 개발에 관한 연구)

  • Park, Jin-Hee;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.89-100
    • /
    • 2019
  • Sleep apnea, a medical condition associated with a variety of complications, is generally monitored by standard sleep polysomnography, which is expensive and uncomfortable. To overcome these limitations, this study proposes an unconstrained wearable monitoring system with stretch-fiber sensors that integrate with the wearer's clothing. The system allows patients to undergo examinations in a familiar environment while minimizing the occurrence of skin allergies caused by adhesive tools. As smart clothing for adult males with sleep apnea, long-sleeved T-shirts embedding fibrous sensors were developed, enabling real-time monitoring of the patients' breathing rate, oxygen saturation, and airflow as sleep apnea diagnostic indicators. The gauge factor was measured as 20.3 in sample 4. The maximum breathing intake, measured during three large breaths, was 2048 ml. the oxygen saturation was measured before and during breath-holding. The oxygen saturation change was 69.45%, showing a minimum measurable oxygen saturation of 70%. After washing the garment, the gauge factor reduced only to 18.0, confirming the durability of the proposed system. The wearable sleep apnea monitoring smart clothes are readily available in the home and can measure three indicators of sleep apnea: respiration rate, breathing flow and oxygen saturation.

Evaluation on Spalling Properties of Ultra High Strength Concrete with Melting and Vaporization of Fiber (유기섬유의 용융 및 기화에 따른 초고강도 콘크리트의 폭렬 특성 평가)

  • Kim, Gyu-Yong;Choe, Gyeong-Cheol;Lee, Joo-Ha;Lee, Seung-Hoon;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • Recently, experimental studies to prevent explosive spalling based on spalling mechanism and addition of Polypropylene fiber in high strength concrete (HSC) are performed actively. However, with respect to ultra high strength concrete (UHSC), its compact internal structure is more difficult release vapor pressure at rapid rising temperature compared to HSC. Therefore, in this study, an experiment was conducted to evaluate spalling properties of UHSC using ${\Box}$ $100mm{\times}100{\times}H200mm$ rectangular specimen according to ISO-834 standard fire curve. With respect melting point of fiber, three fiber types of Polyethylene, Polypropylene, and Nylon fibers with melting temperature of $110^{\circ}C$, $165^{\circ}C$, and $225^{\circ}C$, respectively, were considered. Mixed fiber of 0.15% and 0.25% of concrete volume was used to consider spalling properties based on water vapor pressure release. Then, TGDTA test on fiber and FEM analysis were performed. The results showed that it is difficult to prevent initial spalling without loss of fiber mass even if fiber melting temperature is low. Also, in preventing thermal spalling, fiber that melts to rapidly create porosity within 10 minutes of fire is more effective than that of low melting temperature property of fiber.