• Title/Summary/Keyword: 유기성 담체

Search Result 39, Processing Time 0.021 seconds

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment (생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.22-37
    • /
    • 2006
  • The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

Transient Behaviors of a Two-Stage Biofilter Packed with Immobilized Microorganisms when Treating a Mixture of Odorous Compounds (미생물 포괄고정화 담체를 이용한 이단 바이오필터에서의 오염부하량 동적 부하변동시 복합악취 제거효율 변화특성)

  • NamGung, Hyeong-Kyu;Shin, Seung-Kyu;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1126-1133
    • /
    • 2010
  • A two-stage biofilter was constructed and utilized to determine the removal efficiency when treating dynamic loading of a mixture of odorous compounds including benzene, toluene, p-xylene, ammonia and hydrogen sulfide. A yeast strain, Candida tropicalis, and a sulfur oxidizing bacterial (SOB) strain, Acidithiobacillus caldus sp., were immobilized in polyurethane media and packed in the two-stage biofilter. The experiment of dynamic loading variation was composed of (1) stepwise loading variation of all the odorous compounds (total EC test), (2) stepwise loading variation of each odorous compound, and (3) intermittent loading variation with 2-day-off and 3-day-on. The total EC test showed that the maximum elimination capacity was $61\;g/m^3/hr$ for total VOCs, and 5.2 and $9.1\;g/m^3/hr$ for ammonia and hydrogen, respectively. In addition, the inhibition between VOCs was observed when the loading of each individual VOC was varied. Especially the stepwise increase in toluene loading resulted in decreases of benzene and p-xylene removal efficiencies about 30% and 25%, respectively. However, the inhibition between organic and inorganic compounds was not observed. The intermittent loading variation with 2-day-off and 3-day-on showed that greater than 95% of the overall removal efficiency was restored in two days after the loading resumed. Consequently, the two-stage biofilter packed with immobilized microorganisms showed advantages over conventional biofilters for the simultaneous treatment of the mixture of organic and inorganic odorous compounds.

Bioactive Foam Reactors for the Enhanced Biological Degradation of Toluene (계면활성제 거품을 이용한 미생물반응기에서의 기체상 톨루엔 분해)

  • Kim, Yong-Sik;Son, Young-Kyu;Khim, Jee-Hyung;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.468-475
    • /
    • 2005
  • Biofilters packed with various materials have emerged as a sustainable technology for the treatment of volatile organic compounds (VOCs); however, problems including low performance and clogging are commonly encountered. Recently, a bioactive foam reactor (BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of BFRs using toluene as a model compound. Prior to bioreactor studies, a series of bottle tests were used to select a suitable surfactant for the BFR application. Experimental results of the batch bottle tests indicated that TritonX-100 was the most appropriate one among the surfactants tested, since it showed a minimal effect on the toluene biodegradation rate while the other surfactants lowered the toluene biodegradation rate significantly. Using the selected surfactant, the BFR performance was determined by changing operating parameters including gas residence time and toluene loading. As the gas residence time increased from 0.5 minutes to 2 minutes, the toluene removal efficiency increased from approximately 50% to 80%. In addition, an increase of the toluene loading from $38\;g/m^3/hr$ to $454\;g/m^3/hr$ resulted in a decrease of toluene removal efficiency from approximately 70% to 20%. The BFR had a maximum elimination capacity of $108\;g/m^3/hr$ for toluene, which was much higher than those generally reported in the literature. The high toluene-elimination performance indicates that the BFR be a potential alternative to the conventional, packed-type biofilters. However, the limitation of toluene solubilization and foam stability at either high or low gas flow rate are still problems to be challenged.

A Study on the removal of nitrogen by combined nitrification and autotrophic denitrification (질산화와 무기영양 독립탈질화의 연계처리에 의한 질소제거에 관한 연구)

  • Han, Gee-Bong;Jeong, Da-Young;Woo, Mi-Hee;Kim, So-Yeon;Kim, Bio
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • Removal of nitrogen compound under nitrification related with denitrification by biofilm which developed on the porous media was investigated. With the investigation of $NH_4-N$ nitrification and autotrophic denitrification supplied with sulfur media as electron donor, conclusions were retrieved as follows. When $F/M_N$ ratio of $NH_4-N$ was increased from $0.0062-0.034gNH_4-N/g\;MLVSS{\cdot}day$ by the change of influent concentration and HRT the nitrification rate decreased as the increase of loading rate. Also under the same conditions of $F/M_N$ ratio, the alkalinity consumption rate of operation was higher at 8 hours of HRT than at 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. Denitrification rate with various EBCT(Empty Bed Contact Time) showed average 25% at 8.4hrs of EBCT but sharply decreased average 5% at 4.6hrs of EBCT, so the operation would be more effective at above 8.4hrs of EBCT. Also denitrification rate was known to be adversely increased as $NO_3-N$ loading rate per unit volume of sulfur-media was decreased within the range of $0.5{\sim}2.0kgNO_3-N/m^3{\cdot}day$.

  • PDF

Isolation and Purification of Bioactive Materials Using High-Performance Counter-Current Chromatography (HPCCC) (고속역류크로마토그래피 기술을 이용한 생리활성 물질의 분리 및 정제)

  • Jung, Dong-Su;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2010
  • Many successive liquid-liquid extractions occur enabling purification of the crude material to occur. In high performance counter-current chromatography (HPCCC), crude material is partitioned between two immiscible layers of solvent phases. The stationary phase (SP) is retained by hydrodynamic force field effect and the mobile phase (MP) is pumped through the column. Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases. There are many key benefits of liquid stationary phases such as high mass and volume injection loadings, total sample recovery, and easy scale-up. Many researchers showed that predictable scale-up from simple test is feasible with knowledge of the stationary phase retention for the planned process scale run. In this review we review the recent advances in HPCCC research and also describe the key applications such as natural products and synthetics (small or large molecules).

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.

The Stability of N-(butoxymethyl)-2-chloro-2', 6'-diethylacetanilide(Butachlor) formulation (N-(butoxymethyl)-2-chloro-2',6'-diethylacetanilide(Butachlor) 제제(製劑)의 안정성(安定性))

  • Hong, Jong Uck;Lee, Jung Hoon;Kim, Jang Eok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.56-62
    • /
    • 1984
  • This experiment was carried out to investigate the effects of distilled water, pH, uv-irradiation, carrier, emulsifier and organic solvent on the stability of butachlor formulations in the course of storage. The uv-irradiation increased the decomposition rate of butachlor formulations in the order of emulsifiable concentrate, sand coated granular and zeolite adsorbed granular. Decomposition of butachlor emulsion was not affected by water and pH. Decomposition of butachlor emulsifiable concentrate which were prepared with various organic solvents at $50^{\circ}C$ was higher in the polar organic solvents than in the non-polar organic solvent. Decomposition of butachlor-emulsifiable concentrate emulsified in Tween-60 was higher than in Hy-620C or Newkalgen-MC.

  • PDF

Application of Earthworm Casting-derived Biofilter Media for Hydrogen Sulfide Removal (지렁이 분변토를 이용한 생물담체가 충전된 바이오필터에 의한 황화수소 제거)

  • Yoo, Sun-Kyoung;Lee, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.820-825
    • /
    • 2007
  • Earthworm casting was the natural fertilizer that contained high concentrations of nutrients such as nitrogen, phosphate and potassium and of over $10^8$ CFU/ml of microorganisms. Greater than 80% of feed was excreted through the fermentation by the intestinal enzyme, after worm had eaten feeds such as fallen leaves and rotten roots under the ground. Also, the soil structure of casting was known to be very efficient in the aspects of the porosity, the water permeability, and deodorizing activities. In this research, the biofilter packed with a biomedia made of casting and waste polyurethane foam, a binder, which helped to improve the durability and perpetuity of casting, was investigated to degrade malodorous hydrogen sulfide gas. The biomedia had no need of extra supply of nutrients and of microbial inoculations. On the beginning of the operations, it showed 100% removal of hydrogen sulfide gas without lag phase. At SV of 50 $h^{-1}$, hydrogen sulfide gas from the outlet of the biofilter was not detected, when inlet concentration increased to 450 ppmv. After that, removal efficiency decreased as increasing inlet hydrogen sulfide concentration. Hydrogen sulfide removal was maintained at almost 93% until inlet concentration was increased up to 950 ppmv, at which the elimination capacity of $H_2S$ was 61.2 g $S{\cdot}m^{-3}{\cdot}h^{-1}$. Maximum elimination capacity guaranteing 90% removal was 61.2, 65.9, 84.7, 89.4 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV ranging from 50 $h^{-1}$ to 300 $h^{-1}$, but was 59.3 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV of 400 $h^{-1}$. The results calculated from Michaelis-Menten equation revealed that $V_m$ increased from 66.04, 88.96, 117.35, 224.15, to 227.54 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ with increasing space velocity in the range of 50 $h^{-1}$ to 400 $h^{-1}$. However, saturation constant$(K_s)$ decreased from 79.97 ppmv to 64.95 and 65.37 ppmv, and then increased to 127.72 and 157.43 ppmv.

Hydrogen Production by the Immobilized Cells of Rhodopseudomonas sp. E15-1 (Rhodopseudomonas sp. E15-1의 균체 고정화에 의한 수소생성)

  • Bae, Moo;Park, Sun-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 1989
  • For improvement of photobiological hydrogen production, Rhodopseudomonas El5-1, a photo-synthetic becterium capable of producing n high yield of hydrogen, was immobilized and conditions for hydrogen production by immobilized cells were examined. The optimum concentration for the combined matrix was obtained when sodium alginate was used at final concentration of 4%. The immobilized cells may reduce the inhibitory effects of nitrogen or oxygen. To minimize the diffusion resistance of the nutrients in alginate gel, the bend size less than 2 mm in diameter was desirable. The immobilized cells were also able to utilize n wide range of organic substrates for the production of hydrogen. The hydrogen producing activity of the immobilized cells was maintained for 20 days without loss of activity during semi-continuous operation of the reactor by feeding of new medium periodically and continuous production of hydrogen could be successfully performed for 30 days.

  • PDF

Removal Characteristic of Nitrogenous Compounds According to the Combination of Feeding Ratio between the Supernatant of Precipitation Tank and Raw Domestic Wastewater (침전조 상등액과 유입하수의 유량대비에 따른 하수 내 질소 화합물 제거특성)

  • Park, Sang Min;Park, Jin Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • This study was done to improve the effectiveness of nitrification and denitrification using the aeration-anoxic combination method using CFSTR(continuous-flow stirred-tank reactor) attached with an anoxic reactor filled with a media. In order to calculate the concentration of nitric acid within the aeration tank proportional to the anoxic rate within the reactor, supernatant within the inflow and precipitation tanks were influxed into the anoxic reactor. The rate of nitrogen removal was calculated using the concentration of inflow and flow of returned supernatant. From the results of this experiment, the carbon source needed in the anoxic reactor came from the inflow so that anoxification was achieved completely using the inflow source without the introduction of an external carbon source. However, as the ratio of nitric acid becomes large in inflow and nitric acid flow, the carbon source within the input source decreases so that the concentration of carbon source is important.

  • PDF