• Title/Summary/Keyword: 유기발광다이오드

Search Result 203, Processing Time 0.026 seconds

Fabrication of organic light emitting diode with inkjet printing technology (잉크젯 프린팅 기술을 이용한 유기 발광 다이오드 제작)

  • Kim, Myong-Ki;Shin, Kwon-Yong;Hwang, Jun-Young;Kang, Kyung-Sae;Kang, Heui-Seok;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1448-1449
    • /
    • 2008
  • Inkjet printing is commonly used in depositing the solution of functional materials on the specific locations of a substrate, and also it can provide easy and fast patterning of polymer films over a large area. Inkjet printing is applicable to fabricating an organic light emitting diode (OLED), since conducting materials used as emissive electroluminescent layers can be manufactured into inks for ink jetting. By using the inkjet technology, we have succeeded in patterning a poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) layer and a poly[2-Methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layer on the Indume tin oxide (ITO) patterned substrates, and fabricating organic light emitting diodes.

  • PDF

A study on die method of organic light emission diod's current accelerated life test (유기발광 다이오드의 전류 가속 수명 평가법에 대한 연구)

  • Jung, Kyung-Hee;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2009.10a
    • /
    • pp.234-240
    • /
    • 2009
  • The growing mobile products market is expected energy efficiency. So product design is more important focusing on reducing power consumption than improving technology of color sense. A Organic light emission diode is in limelight of the best display to satisfy market expectation. A Organic light emission diode is achieved low power consumption, pixel response which was fast for its time, high contrast of brightness and wide color reproduction raio. Therefore there is a fierce competition for the organic light emission diode development between a country and another country over business. The technical value's life is short because of a fierce development competition, and there is little probability that technical success become business success. In this study, the purpose is reduce the time for life test by accelerated current and it can do production possible design by accelerated life model in design phase.

  • PDF

유기 발광 다이오드의 광 추출 효율 개선을 위한 다양한 광학기능구조의 적용

  • Kim, Yang-Du;Kim, Gwan;Heo, Dae-Hong;Lee, Heon
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.64-79
    • /
    • 2018
  • Recent years, OLEDs have been progressed intensively and been widely applied to Display and Lighting industry,Almost 100% internal quantum efficiency was achieved by developing new materials and structure optimization. However, external quantum efficiency was still low due to total internal reflection of light inside OLED devices and absorption of light at the surface of metal electrode. In order to improve external quantum efficiency of OLED devices, various kinds of optical functional structures were introduced to inside and outside of OLED devices to increase light extraction efficiency. In this paper, various efforts to apply optical functional structures in OLED devices were reviewed and way to improve light extraction efficency of OLED devices were discussed.

A study on Fabrication and Characterization of Organic Light-Emitting Diodes (유기 발광 다이오드의 제작 및 특성에 관한 연구)

  • Lee, Han-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.89-91
    • /
    • 2008
  • Organic EL has been expected to adopt to a new styles of technology that make flat display after Tang & Vanslyke made good electric luminescence device in late 1980s. Their studies based on multi layer structure that consists of emitting layer and carrier transporting layer using proper organic material. But oxidization of organic layer by ITO, energy walls in both pole interface, contaminations of ITO surface, importance of protecting membrane, diffusive dimming of light to cathode organic layer, these causes of degradations are common facts of a macromolecule and micro molecule. We think these degradation caused by the impact of heat and electro-chemical factor, bulk effect and interface phenomenon, and raise a question.

  • PDF

Electrical Properties of Organic Light-Emitting Diode depending on Varied Temperature (온도변화에 따른 유기 발광 다이오드의 전기적 특성)

  • Lee, D.K.;Oh, Y.C.;Cho, C.N.;Kim, J.S.;Shin, C.G.;Park, G.H.;Lee, S.I.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.492-493
    • /
    • 2007
  • We have investigated Electrical Properties of Organic Light-Emitting Diode depending on Varied Temperature using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the electrical properties of organic light emitting diodes by impedance characteristics of ITO/$Alq_3$/Al. Impedance characteristics was measured complex impedance Z and phase e in the frequency range of 40 Hz to $10^7\;Hz$. From these analyses, we are able to interpret electrical Properties of OLED depending on temperature.

  • PDF

Characteristics of Electrical Conduction of OLED with Various Temperature and thickness (온도와 두께 변화에 따른 유기 발광 다이오드의 전기전도 특성)

  • Lee, D.G.;Oh, Y.C.;Jung, D.H.;Lee, H.S.;Jang, K.U.;Kim, C.H.;Hong, J.W.;Kim, T.W.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.516-517
    • /
    • 2005
  • We made use of $Alq_3$ which is the representative light-emitting material. Electric conduction mechanism were analyzed in this paper. We have also measured current density-thickness-voltage characteristics with thickness variation from 60 to 400 nm. We analyzed the low electric and the high electric field in theoretically.

  • PDF

Red Electrophosphorescent Organic Light-emitting Diodes Based on New Iridium Complexes. (새로운 이리듐 화합물을 이용한 적색 인광 유기 발광 다이오드)

  • Gong, Doo-Won;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.73-74
    • /
    • 2006
  • New iridium complexes that have carbonyl group were synthesized and demonstrated various red light emission in organic light-emitting diodes (OLEDs). The maximum luminance of $57000{\sim}15300\;cd/m^2$ at 15 V and the luminance efficiency of 22.8~5.6 cd/A at $20\;mA/cm^2$ were achieved respectively. The peak wavelength of the electroluminescence were at 570~604 nm and the device also showed a stable color chromaticity with various voltages.

  • PDF

Characteristics of Electrical Conduction Mechanism of OLED with Various Temperature (유기 발광 다이오드의 온도에 따른 전도특성)

  • Lee, Dong-Gyu;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.197-200
    • /
    • 2005
  • We have studied conduction mechanism that is interpreted in terms of space charge limited current (SCLC) region and tunneling region. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris (8-hydroxyquinolinoline) aluminum(III) $(Alq_3)$ as an electron injection and transport and emitting layer. We manufactured reference structure that has in $ITO/TPD/Alq_3/Al$. Buffer layer effects were compared to reference structure. And we have analyzed out electrical conduction mechanism in $ITO/Alq_3/Al$ device with various temperature.

  • PDF

Study on the ITO Pre-treatment for the Highly Efficient Solution Processed Organic Light-emitting Diodes (고효율의 용액공정용 유기 발광 다이오드 제작을 위한 ITO 전처리 연구)

  • Choi, Eun-Young;Seo, Ji-Hyun;Choi, Hak-Bum;Je, Jong-Tae;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • We demonstrated that the solution processed organic light-emitting diodes (OLEDs) have the high efficiency with pre-treated indium-tin-oxide (ITO). ITO surface was pre-treated with four methods and compared each other. The pre-treatment of ITO surface improves the chemical and physical characteristics of ITO such as the surface roughness, adhesion property, and the hole injection ability. These properties were analyzed by the contact angle, atomic force microscope (AFM) image, and the current flow character in device. As a results, the device with ITO pre-treated by $O_2$ plasma shows the current efficiency of 5.93 cd/A, which is 1.5 times the device without pre-treatment.

Electrical property analysis of Organic Light Emitting Diodes using impedance spectroscopy (임피던스 분석법을 이용한 유기발광 다이오드의 전기적 특성 분석)

  • Park, Jae-Il;Park, Hyun-Jun;Nam, Eun-Kyung;Jung, Dong-Geun;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.452-453
    • /
    • 2007
  • In this work, enhanced simulation is proposed by using impedance spectroscopy. The impedance spectroscopy is one of the popular methods to measure the electrical property of Organic Light Emitting Diodes. The results show that the equivalent circuit needs a inductance element linked by serial connection and the element of resistance is more important role to decide the electrical property.

  • PDF