• Title/Summary/Keyword: 유기농경지

Search Result 84, Processing Time 0.038 seconds

Comparison of Farm Based Fertilizer Usage in 1992 and 1999 (1992년과 1999년의 농가 비료이용 실태 변화 비교)

  • Kim, Seok-Cheol;Park, Yang-Ho;Lee, Youn;Lee, Ju-Young;Kim, Chung-Su;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.344-355
    • /
    • 2003
  • Korea is one of those countries that have very high usage rates of chemical fertilizers per unit area of cropland. To reduce the fertilizer application rate, a variety of agricultural polices has been introduced since the 1990s. In this study, fertilizer usage was surveyed on the farm base throughout the country in 1999, and the data were compared with those of 1992. Organic fertilizer application rates were decreased in most cereal crops with time pass, but maintained similar levels in vegetables grown in plastic-film houses and in upland soils. Chemical fertilizer application rates were decreased in most of the cereal crops and vegetables surveyed; however, this reduction was concentrated in phosphate and potassium usage, but not in nitrogen. In spite of this decrease, the fertilizer application levels to most crops were maintained at levels much higher than recommended. In the nutrient balance, which was calculated from the difference between input (chemical and organic fertilizers) and output (agricultural products), the nitrogen nutrient surplus did not decrease; however, phosphate and potassium decreased by 21% and 13%, respectively, in 1999 compared with 1992. To reduce fertilizer utilization and to conserve environment, further reduction of fertilizer application is essential.

Analysis of Patent Trends in Agricultural Machinery (최신 농업기계 특허 동향 조사)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Lee, K.H.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.99-111
    • /
    • 2021
  • The connected farm that agricultural land, agricultural machinery and farmer are connected with an IoT gateway is in the commercialization stage. That has increased productivity, efficiency and profitability by intimate information exchange among those. In order to develop the educational program of intelligent agricultural machinery and the agricultural machinery safety education performance indicator, this study analyzed patent trends of agricultural machine with unmanned technology used in agriculture and efficiency technology applied advanced technologies such as ICT, robots and artificial intelligence. We investigated and analyzed patent trends in agricultural machinery of Korea, the USA and Japan as well as the countries in Europe. The United States is an advanced country in the field of unmanned technology and efficiency technology used in agriculture. Agricultural automation technology in Korea is insufficient compared to developed countries, which means rapid technological development is needed. In the sub-fields of field automation technology, path generation and following technology and working machine control technology through environmental awareness have activated.

Understanding Spatial Variations of Water Quality Using Agricultural Nutrient Indices in Chonnam Province (전남 지역 농업분야 양분 지표를 이용한 수질 공간 변이 해석)

  • Jeon, Byeong-Jun;Lim, Sang-Sun;Lee, Kwang-Seung;Lee, Se-In;Ham, Jong-Hyun;Yoo, Sun-Ho;Yoon, Kwang-Sik;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 2014
  • BACKGROUND: Water quality of rural areas are susceptible to agricultural nutrient input and supply such as chemical fertilizer and livestock manure. This study was conducted to evaluate the usefulness of nutrient (N and P) indices in understanding spatial variations of water quality across Chonnam province which is a typical agricultural region in Korea. METHODS AND RESULTS: The nutrient indices including chemical fertilizer supply, livestock manure production, and nutrient balance were correlated with water quality data (T-N, T-P, BOD, and COD) for the twenty-two districts of the province. Concentration of T-N were positively correlated with chemical fertilizer supply, livestock manure N production, and nutrient balance (P<0.05 or P<0.01). Meanwhile, T-P concentration was not correlated with these nutrient indices; however, there was a tendency that T-P concentration increases with livestock manure P production (P=0.06) and with nutrient balance (P=0.09). These results suggest that T-N concentration is susceptible to both chemical fertilizer and livestock manure; whereas T-P is likely to be affected by livestock manure rather than chemical fertilizer. The concentrations of BOD and COD were also positively (P<0.05 or P<0.01) correlated with livestock manure production. CONCLUSION: This study shows the usefulness of nutrient indices in understanding spatial variations of water quality and suggests that livestock manure rather than chemical fertilizer can be a more critical water pollution source and thus highlights the need for more attention to livestock manure treatments for rural water quality management.

Heavy Metal Speciation in Compost Derived from the Different Animal Manures (이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化))

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-282
    • /
    • 2004
  • Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

Estimating Carbon Fixation of 14 Crops in Korea (우리나라 주요 작물의 탄소 고정량 산출)

  • Kim, Gun-Yeob;Ko, Byong-Gu;Jeong, Hyun-Cheol;Roh, Kee-An;Shim, Kyo-Moon;Lee, Jeong-Taek;Lee, Deog-Bae;Hong, Suk-Young;Kwon, Soon-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.460-466
    • /
    • 2009
  • Carbon fixation and density of crops are important to estimate carbon uptake or emission by agricultural production activities and to establish life cycle inventory of crops for assessment of climate change impact. In this study, regional carbon fixation and density in each part of 14 crops, harvest index, and ratio of aboveground to underground were investigated to estimate biomass of 14 crops in Korea by using agricultural statistics data. Biomass yield of potato was $16.5ton\;ha^{-1}$, which was the highest, and those of rice, sweet potato, and garlic were $10.5ton\;ha^{-1}$, $8.7ton\;ha^{-1}$, and $7.5ton\;ha^{-1}$ respectively. Biomass yield of Green onion was the lowest as $2.8ton\;ha^{-1}$. Carbon density of 14 crops were in the order of potato ($6.4ton\;ha^{-1}$), rice ($4.2ton\;ha^{-1}$), sweet potato ($3.4ton\;ha^{-1}$), rape ($2.9ton\;ha^{-1}$) and garlic ($2.8ton\;ha^{-1}$). Regional distribution of carbon contents for each crop mapped revealed that carbon fixation of rice, soybean, sesame, garlic, and green onion were the highest in Jeonnam province, barley, red pepper, and watermelon in Gyeongnam, perilla in Chungnam, peanut in Gyeongbuk, rape and carrot in Jeju, sweet potato in Gyeonggi, potato in Gangwon. The results can be applied for assessing life cycle inventory of crops and crop productivity using remotely sensed data.

Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines (문명 금은광산 주변 논토양에서 As 및 중금속의 토양과 벼작물의 상관성 평가)

  • Kwon, Ji Cheol;Park, Hyun-Jung;Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.337-349
    • /
    • 2015
  • This study has focused on investigation of correlation for As and heavy metals in paddy soil and rice crops sampled in the vicinity of the abandoned Munmyung Au-Ag mine. Soil samples extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA were analyzed for As and heavy metals (Cd, Cu, Pb and Zn). Rice grain samples grown on the soils were also analyzed for the same elements to evaluate the relationships between soils and rice crops. According to soil extraction methods, As and heavy metal contents in the soils were decreased in the order of aqua regia > 0.01 M $CaCl_2$ > 1 M $MgCl_2$ > 0.05 M EDTA. In addition to correlation analysis, statistically significant correlation with the four extraction methods (p<0.01) were found in the soil and rice samples. As calculation of biological accumulation coefficients (BACs) of the rice crops for As and heavy metals, the BACs for Cd, Zn and Cu were relatively higher than those for As and Pb. This study also carried out a stepwise multiple linear regression analysis to identify the dominant factors influencing metal extraction rates of the paddy soils. Furthermore, daily intakes of As and heavy metals from regularly consumed the rice grain (287 g/day) grown on the contaminated soils by the mining activities were estimated, and found that Cd and As intakes from the rice reached up to 73.7% and 51.8% for maximum allowance levels of trace elements suggested by WHO, respectively. Therefore, long-term consumption of the rice poses potential health problems to residents around the mine, although no adverse health effects have yet been observed.

Furrow Covering Effects with Rice Straw on Nutrient Discharge from Upland Soil Used for Red Pepper Cultivation (고추밭 고랑 볏짚피복에 의한 양분유출 특성)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Jung, Goo-Buk;So, Kyu-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Excessive application of nutrient supplement on the upland soil may increase the amount of discharge to surrounding water systems. The chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) are used as a nutrient supplement for cultivation of red pepper. Rice straws are widely used as a soil covering material in order to reduce weed occurrence, to protect soil moisture, and to supply organic matter in upland soil. This study was conducted to evaluate the furrow covering effect with rice straw on nutrient discharge in upland soil used for red pepper cultivation. The experimental plots of nutrient supplement were consisted of CF, CMC, and PMC and the amount of nutrient application were as recommended amount after soil test for red pepper cultivation. Each nutrient supplement treatment plot has no furrow covering (CFC) as a control and furrow covering with rice straw (FCS), respectively. Furrow covering with rice straw (FCS) of CF treatment and CMC treatment reduced the amount of T-N(total nitrogen) discharge by $1.4kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, respectively, compared to control. While the amount of T-P(total phosphorus) discharge of the furrow covering with rice straw of CF, CMC, and PMC increased by $2.1kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, and $0.2kg\;ha^{-1}$, respectively, compared to control. The phosphorus and nitrogen content of straw were 0.4 % and 0.3 % respectively. In addition, in three week the phosphorus was eluted from the straw which soaked in distilled water. Thus, it was assumed that T-P discharging originated from rice straw which applied as a furrow covering material. The furrow covering with rice straw reduced weed occurrence compared to control. But production of fresh red pepper was not influenced significantly by furrow covering with rice straw. In conclusion, excessive furrow covering with rice straw could induce T-P discharge from upland soil used for red pepper cultivation. Further studies are needed to evaluate the appropriate amount of rice straw as a furrow covering material.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Reduction of Nutrient Infiltration by Supplement of Organic Matter in Paddy Soil (유기물 시용에 의한 벼논에서의 양분 유출경감)

  • Roh, Kee-An;Kim, Pil-Joo;Kang, Kee-Kyung;Ahn, Yoon-Soo;Yun, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.196-203
    • /
    • 1999
  • To establish the best rice cultivating system in the aspects of environment-loving agriculture, the amounts and patterns of nitrogen leached in the paddy soil were investigated with 7 treatments; Recommendation(R), Farmer's usual practice(FUP), Straw compost+chemical fertilizers reduced(SCF), Fresh straw+recommendation(FSC), Fresh cow manure(FCM), Cow manure compost(CMC), and no fertilization as Control(C). And SCF, FCM and CMC were applied with same amounts of total nitrogen to R. The infiltrated water samples were collected in ceramic porous cups which were buried at 60cm depth from the top. Concentrations of nitrate-N in irrigated water were $1.3mg\;l^{-1}$ on rice transplanting season when nutrients began to elute from paddy soil, and $0.4mg\;l^{-1}$ after breaking off irrigation. But it was $4-6mg\;l^{-1}$ in rice growing period. The maximum concentration of nitrate-N in leachate was not more than $7mg\;l^{-1}$ during rice cultivation. The amounts of nitrogen leached in R, FUP, SCF, FSR, FCM, CMC and C were 59, 63, 25, 41, 24, 27, $17kg\;ha^{-1}y^{-1}$ respectively. Nitrogen leaching was decreased to about 30% by supplement of fresh rice straw(FSC) to R. Furthermore, it was possible to reduce to over 50% of nitrogen leaching by reducing chemical fertilizer application(CF), or by substituting of chemical fertilizers with fresh cow manure(FCM) or cow manure compost(CMC). In added organic fertilizer treatments, the amounts of infiltrated nitrogen were less $13-46kg\;ha^{-1}y^{-1}$ than that of input by irrigation. This experiment showed that nutrients leaching was minimized by substitution of chemical fertilizers with organic fertilizer or by application of straw with chemical fertilizers in rice paddy soil and rice cultivation with suitable fertilizer management can work as a purifier rather than contaminator of water.

  • PDF

Effect of Crop Yield and Soil Physical Properties to Application of Organic Resources in Upland (밭 토양에서 유기물 자원의 시용이 작물 수량 및 토양 물리성에 미치는 영향)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Zhang, Yongseon;Kim, Gisun;Seo, Youngho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.15-22
    • /
    • 2017
  • Application of organic resources to agricultural land can increase crop yield by improving soil characteristics. The objective of this study was to evaluate effect of crop yield and soil physical properties including aggregate stability to application of organic resources in upland. The soybean was cultivated in a sandy loam field and a clay loam field located at Suwon and a sandy loam field located at Pyeongchang. The organic resources used in this study were rice straw compost (RSC), composted pig manure with sawdust (CPIG), composted poultry manure with sawdust (CPM), and cocopeat applied before sowing crop. Application rate of organic resources was determined based on carbon content and water content. The inorganic fertilizers were applied based on soil testing. In addition, the decomposition of RSC, CPIG, and cocopeat was characterized by isothermal incubation with sandy loam soil. The decomposition rate was highest for RSC followed by CPIG and cocopeat. Organic resource application increased yield of soybean, which effect was greater in clay loam than in sandy loam. In addition, increase in gas phase proportion by organic resource application was distinct in clay loam soil compared with sandy loam soil. In terms of aggregate stability, increasing effect was more obvious in sandy loam soils than in a clay loam soil. The highest yield was observed in RSC treatment plots for all the fields. Improvement of soybean yield and soil physical characteristics by cocopeat was not as much as that of the other organic resources. The results implied that RSC could be recommended for promoting aggregate stability and crop yield in upland cultivation.