• Title/Summary/Keyword: 유/무기 하이브리드

Search Result 83, Processing Time 0.027 seconds

Preparation of UV-Curable Organic-Inorganic Hybrid Hard Coating Films Using Alumina Sols and Acrylate Monomers (알루미나 졸과 아크릴레이트 단량체를 이용한 UV경화형 유-무기 하이브리드 하드코팅 막 제조)

  • Hwang, Ji-Hyeon;Song, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.277-284
    • /
    • 2011
  • In this study, UV-curing type organic - inorganic hybrid hard coating solutions were prepared from alumina sols and acrylate monomers. The mixture of alumina sols, prepared from aluminum isopropoxide, and a silane coupling agent, methacryloxypropyl trimethoxysilane(MPTMS), was used as an inorganic component. Also, the mixture of acrylate monomers, pentaerythritol triacrylate(PETA), 1,6-hexanediol diacrylate(HDDA) and dipentaerythritol hexaacrylate (DPEHA), was used as an organic component. The organic-inorganic hybrid coating solutions were obtained by mixing the inorganic component and organic component, deposited on polycarbonate substrates by spin coating and densified by UV-curing. The effect of the amount of MPTMS in the inorganic component and the irradiation time during UV-curing was studied on the properties of coating films. As a result, when 0.20 mole of MPTMS was used, the pencil hardness of coated films showed an excellent pencil hardness of 3H and also exhibited a good abrasion resistance of 2% in haze.

Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material (실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구)

  • Son, Dae Hee;Kim, Dae-Sung;Lee, Seung-Ho;Kim, Song Hyuk;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

A Study on the Hybrid Floor Adhesive System with Crack Resistance (균열대응성을 보유한 유·무기 복합 하이브리드 바닥 접착시스템 연구)

  • Ko, Hyo-Jin;Kim, Rae-Hwan;Kim, Yong-Ro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.171-172
    • /
    • 2023
  • In order to reduce crack defects caused by the behavior of concrete during floor tile construction, this paper introduced a hybrid floor adhesion system that first constructs an organic adhesive with crack correspondence and attaches tiles with inorganic mortar.

  • PDF

Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2 Hybrid Membrane for DMFC (DMFC용 PVDF/SPEEK/TiO2 하이브리드 막의 수분함량과 메탄올 전이현상)

  • You, Sun-Kyung;Kim, Han-Joo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.177-180
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nano particles content. Their liquid uptake, methanol permeability and proton conductivity as a function of inorganic oxide content were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and liquid uptake. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

Characterization of PET films coated with organic-inorganic hybrid coating system containing surface modified zirconia (표면 개질된 지르코니아를 함유한 유-무기 하이브리드 코팅액으로 도포된 PET 필름의 특성)

  • Lee, Soo;Kim, Sang Yup;Kim, Young Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.595-605
    • /
    • 2018
  • In recent years, researches on organic-inorganic coating films have conducted a nanocomposite system composed of organic resin matrices having excellent flexibility and chemical stability and inorganic materials having excellent mechanical properties. The o-phenylphenoxyethyl acrylate (OPPEA) used as the acrylate monomer has a high refractive index of 1.58, and the bisphenol A ethoxylate diacrylate (BAEDA) has a low refractive index but improves the chemical stability of the organic resin. In addition, zirconia used as an inorganic material exhibits excellent durability and optical properties. In this study, the BAEDA contents in acrylate monomer were controlled to produce a film with suitable optical transparency. And optimum conditions were established by comparing the changes in surface properties of PET films detected with pencil hardness tester, Abbe's refractometer, and UV-vis spectrophotometer. The hydrophobicity and the dispersibility of zirconia in acrylate monomer were much improved after modification with ${\gamma}$-methacryloxypropyltrimethoxysilane (MPS), which is a silane coupling agent. And the existence of ester C=O bond peak at $1716cm^{-1}$ introduced by MPS through FT-IR ATR spectrophotometer confirmed the completion of surface modification of zirconia with MPS. In addition, the presence of silicon atom on the surface modified zirconia was also proved using X-ray fluorescence spectrometer. When the photocurable hybrid coating was prepared by introducing chemically modified zirconia into acrylate monomer, the refractive index of this coated PET film was improved by 1.2%, compared to the only acrylate coated PET film. The homogeneous distribution of zirconia in acrylate coating layer on PET film was also identified through SEM/EDS mapping analysis technique.

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Improving the Corrosion Resistance of Cold-Rolled Carbon Steel by Treatment with a Hybrid Organic/Inorganic Coating Solution (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 내식특성)

  • Kim, Jung-Ryang;Choi, Chang-Min;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the past, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on $Cr^{+6}$. However, the use of chromium salts is now restricted because of environmental protection legislation. Previous research investigated the optimum corrosion resistance of galvanized steel treated with an organic/inorganic solution containing Si. The result showed that the optimum corrosion resistance occurred by heat treatment of $190^{\circ}C$ in 5 min. In this study, one organic and three hybrid organic/inorganic coating solutions were applied to cold-rolled (CR) carbon steel. The coatings were then evaluated for corrosion resistance under a salt spray test. The coating solutions examined in this study consisted of urethane-only, urethane-Si, urethane-Si-Ti, and urethane-Si-Ti-epoxy. The results of the 7 h salt spray test showed that the urethane-Si-Ti and urethane-Si-Ti-epoxy coating solutions had superior corrosion resistance on CR steel.