• Title/Summary/Keyword: 윅기공율

Search Result 8, Processing Time 0.025 seconds

Analysis of Heat Transport Limitations of the Heat Pipe for Structural Characteristics of Sintered Metal Wick (소결윅의 구조적 특성에 따른 히트파이프의 열수송 한계 분석)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.97-103
    • /
    • 2005
  • In this paper, effects on the heat transport limitation of heat pipe by the wick structural factors were theoretically analyzed for the sintered-copper wick heat pipe. Uniformity of particle size and sintering process were acted as dominant factors on the pore distribution and wick porosity, and small deviations of the wick thickness and the pore size greatly affected the heat transport limitations of the heat pipe. Especially, slight variations of the wick thickness, mean particle radius and capillary radius along the vapor temperatures and inclination angles remarkably changed the capillary limitation of the heat pipe.

Theoretical Analysis of Heat Transportation Limitation by Porosity of Wick in Screen Mesh Wick Heat Pipe (스크린메쉬윅 히트파이프에서 윅의 기공율변화에 따른 열수송한계의 이론적 고찰)

  • Lee, Ki-Woo;Park, Ki-Ho;Chun, Won-Pyo;Lee, Wook-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of the present study is to investigate the capillary heat transportation limitation in heat pipe according to the change of screen mesh wick porosity. Diameter of pipe was 6 mm, and mesh numbers are 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of wick porosity and mesh number, the capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, and capillary heat transportation limitation are analyzed by theoretical design method of a heat pipe. As some results, the capillary heat transportation limitation in screen mesh wick heat pipe is largely affected by wick porosity and mesh number.

  • PDF

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Comparison of the Heat transport Limitations for Screen Mesh Wick and Sintered Metal Wick Heat Pipes by Theoretical Analysis (이론적 해석에 의한 스크린 메쉬윅과 소결윅 히트파이프의 열수송 한계 비교)

  • Kim Keun-Bae;Kim Yoo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.267-274
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitations of screen mesh wick and sintered wick heat pipes was performed. The heat pipe diameter was 8mm and water was used for working fluid. For the 250 mesh, each capillary pressures and heat transport limitations, thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius (r$\_$c/), porosity ($\varepsilon$) and permeability (K). The wick capillary limitation was increased as the operating temperature and the wick thickness were increased, and generally the sintered wick showed higher heat transport limitations than that of the screen wick. The thermal resistance of the screen wick was higher than that of the sintered wick and both thermal resistances were linearly increased as the wick thickness was increased.

Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure (다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석)

  • Lee, K.W.;Lee, W.H.;Park, K.H.;Lee, K.J.;Chun, W.P.;Ihn, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

Effects of the Sintered Wick Characteristics on the Heat Transport Limitations of the Heat Pipes (소결윅 특성이 히트파이프의 열수송 한계에 미치는 영향)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.127-135
    • /
    • 2006
  • Experimental studies of the cylindrical sintered-copper wick heat pipes were carried out to investigate the capillary heat transfer characteristics. Six models of the sintered-copper wick heat pipes were manufactured and tested to evaluate the heat transport limitations and the thermal characteristics. Also the performance of the heat pipes was analyzed theoretically and compared with the test results. The heat pipe models are divided into two sintered-wick groups and the nominal particle sizes are $180{\mu}m$(wick #1) and $200{\mu}m$(wick #2) respectively The experimental results showed that, the porosity of wick #1 was higher than that of wick #2, and also the wick #1 was generally superior than the wick #2 for the heat transport capability. The maximum heat transport rates were increased as the wick thicknesses and the vapor temperatures were increased.

Manufacturing Procedure and Characteristic of Sintered Wick for Heat Pipe (히트파이프용 소결윅의 제작과정 및 특성)

  • Yun, Ho-Gyeong;Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.365-370
    • /
    • 2001
  • There are various wick types for heat pipe. In the present study, the manufacturing technology of a sintered wick among various wick types is discussed. The sintering technology using metal has been applied broadly in the field of electronic-telecommunication as well as heat pipes. A study of manufacturing procedure and characteristic of sintered wick for heat pipe have been performed. Copper powder was used as wick material and stainless steel as a mandrel. A manufacturing technology of the mandrel for arranging vapor core in heat pipe, a sintering technology by first or second times and operating temperature for sintering, the measurements of a porosity, pore size, and pore distribution of sintered wick were considered. In the meantime, a heat pipe with sintered wick has been manufactured and a performance test of the heat pipe has been performed in order to review cooling performance. The performance test results for the 4mm diameter heat pipe with the sintered wick shows the stability since the temperature difference between a evaporator and a condenser of the heat pipe is less than $4.4^{\circ}C$, and thermal resistance is less than $0.7^{\circ}C/W$.

  • PDF

Manufacturing and Operating Performance of the Heat Pipe with Sintered Wick (소결윅 히트파이프의 제작 및 작동성능)

  • Yun, Ho-Gyeong;Moon, Seok-Hwan;Ko, Sang-Choon;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1260-1266
    • /
    • 2002
  • In this study, to make an excellent heat pipe, the manufacturing technology of a sintered wick was investigated. Making a sintered wick is known to be very difficult but it has many advantages. For example, the porosity and pore size can be controlled and the capillary force is great. The mixture of copper and pore former powder was used as a wick material and ceramic-coated stainless steel was used as a mandrel which is necessary for vapor flow. To analyze the feature of the manufactured wick, not only porosity and pore size were measured but also the sintered structure was observed. A heat pipe with sintered wick was manufactured and the performance test of the heat pipe was performed in order to review cooling performance. The performance test results for the 4mm diameter heat pipe with the sintered wick shows the stability since the temperature difference between a evaporator and a condenser of the heat pipe is less than 4.4$^{\circ}C$, and thermal resistance is less than 0.7$^{\circ}C$/W, In the meantime the composite wick that is composed with sintered and woven wire was also examined. The heat transfer limit of the heat pipe with composite wick was enhanced about 51%~60% compare to the one with sintered wick.