• Title/Summary/Keyword: 위험성예측모델

Search Result 310, Processing Time 0.027 seconds

Developments in Radiation Health Science and Their Impact on Radiation Protection (방사선 보건과학의 발전과 방사선방호에 미치는 영향)

  • Chang, Si-Young;Kim, In-Gyoo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.185-196
    • /
    • 1998
  • 현재의 방사선방호 원칙과 체계는 국제방사선방호위원회 (ICRP)의 권고에 기반을 두고 있 다. ICRP 의 권고는 대부분 히로시마/나카사키 원폭피해 생존자들에 대한 역학조사 및 수명 연구결과 그리고 관련 방사선생물학 연구결과를 바탕으로 전세계 5개 인구집단(일본, 미국, 푸에리토리코, 영국과 중국)에 대한 방사선위험계수의 예측 및 평가결과에 근거를 두고 있다. 이 저선량 방사선의 (확률적 영향) 위험계수는 인체피폭 방사선량과 그 영향간에는 선형 비례관계가 있으며 영향유발의 문턱값이 존재하지 않는다는 가정인 '선형 무문턱값 선량-영향 모델 (Linear No-Threshold Dose-Effect Model, 이른바 LNT 모텔)' 을 도입하여 유도된 것이다(譯者 밑줄). 그러나 이 LNT 가정의 과학적 근거와 정당성에 대한 비난이 원자력산업계나 일부 과학자들에 의해 제기된 이래, 최근에는 미국 보건물리학회 (HPS)에서 'LNT 가정이 선량과 영향의 관계를 단순화하며 낮은 선량의 위험음 과대평가한다'는 성명서를 발표하기도 했다. 이후 이에 대한 논쟁이 다시 시작되어, 1997 년에 스페인의 Sevill에서는 IAEA와 WHO의 공동주최와 UNSCEAR의 협조로 '저준위 방사선 영향에 대한 국제회의'가 개최되기도 하였으나 아직 어느 쪽에도 유리한 결론이 단정적으로 나지 않았으며, 실질적인 대안이 없는 현실에서 이 LNT 가정은 여전히 방사선방호의 철학적 기초로 남아 있다(譯者 밑줄). 한편, 저선량 방사선의 영향에 대해서는 우리나라에서도 '방사선방어학회, ‘98 년 춘계 심포지움' 및 '원자력학회, '98 년 춘계 학술발표회 워크??????'에서 한양대학교의 이재기 교수에 의하여 소개, 논의된 바 있다.이 논문은 이러한 논의의 후속으로 역자중 일인이 위원으로 있는 OECD/NEA 방사선방호위원회 (CRPPH)가 최근에 ('98.7.) 발간한 보고서를 번역, 주해한 것으로, 과학지식의 진보에 따라 방사선방호분야에서 관심이 되는 주제들에 대한 위원회의 검토의견을 소개하고 있다. 따라서 이 논문이 국내의 방사선방호분야 관계자들에게 최신정보 습득과 지식함양에 좋은 도움이 되기를 기대한다.

  • PDF

Convergence Technique Study through Simulation Thermal Analysis due to the Shape of Electric Heater (전기 히터의 형상에 따른 시뮬레이션 열 해석 연구를 통한 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.241-246
    • /
    • 2015
  • In cold winter season, the apparatuses of heating and heater which warm up the interior of a room are necessary element and the used amount of these apparatuses from the year 2000 has been increased abruptly. But, the fire accident and the danger of fire are also increased. Therefore, 3D modelling is done by referring three kinds of the electric heaters as the heaters of ceramic, carbon and near infrared ray sold in the city for the design of more safe heating apparatuses in this study. The thermal analyses with these models are carried out and the durabilities due to the thermal deformation and stress are studied. By the background of the study results derived in this study ultimately, the durabilities of electric heater models due to each shape can be anticipated and contributed to the development of new heating apparatus with more safe resistance to fire. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Improvement of CSVR used for Flood Damage Estimation based on Insurance Claim DB (침수피해액 추정을 위한 CSVR의 보험 Claim DB 기반 개선)

  • Baek, Chun Woo;Roh, Jin Yong;Lee, You Me;Park, Hong Gyu;Bae, Young Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.193-193
    • /
    • 2019
  • 기후변화로 인한 거대 자연재해 발생의 위험이 지속적으로 증가하고 있으며, 국외의 경우 주요정부기관, 보험사 및 연구기관 중심으로 자연재해 피해예측 모델을 개발하여 사용하고 있다. 침수사고 인한 피해는 건물은 물론이고 가재도구, 재고자산, 기계시설 등의 내용물에서도 발생하며, 건축물 신축단가 등을 이용해 비교적 쉽게 자산가치를 산정할 수 있는 건물구조물과 다르게, 건물내용물의 자산가치는 시설물의 업종, 용도, 사용자 특성 등에 따라 변동성이 큰 특징이 있다. 내용물의 피해액 추정을 위해 자연재해 피해예측 모델은 건물 구조물과 내용물 가치의 비율인 CSVR(Contents to Structure Value Ratio)을 사용하며, CSVR은 시설물 용도에 따른 자산가치평가 통계를 이용해 산정할 수 있다. 충분한 자산가치평가 DB를 확보할 경우 CSVR의 정확도 확보가 가능할 것이며, 이를 위해 국내에서는 민간보험사의 재물보험 계약 4만여건의 건물, 내용물 보험가입금액을 행정안전부 도로명전자지도에서 분류하는 건물 용도에 따라 분석한 연구결과가 있다. 하지만, 일반적으로 보험가입단계에서 대략적으로 추정하는 보험가입금액과 실제 자산의 가치는 차이가 있을 수 있지만, 보험가입물건의 실제 자산가치는 일부만 DB화 되어 있는 단점이 있다. 본 연구에서는 사고 발생 후 작성되는 손해사정보고서에서 평가한 정확한 자산가치 DB를 수집하여, 보험가입금액을 기준으로 산정한 CSVR의 결과와 비교하였다. 손해사정보고서에서 평가한 실제 자산가치를 기준으로 분석한 CSVR과 보험가입금액을 기준으로 산정한 CSVR은, 업종에 따라 유사하거나 큰 차이를 보이는 경우도 있었으며, 침수로 인한 정확한 피해액 추정을 위해서는 보다 양질의 DB확보를 통한 CSVR의 정확도 확보가 필요한 것으로 분석되었다.

  • PDF

Trajectories of Drinking problems of the elderly: A Longitudinal Multi-level Growth Curve Model for Change (노인의 음주문제 발달궤적의 예측요인 : 다수준 성장곡선 모형의 적용)

  • Ahn, Jun Hee;Jang, Soo Mi
    • Korean Journal of Social Welfare Studies
    • /
    • v.43 no.1
    • /
    • pp.389-411
    • /
    • 2012
  • A new era of research has focused on examining the growth of change in drinking problems among the elderly. Thus, the purpose of the present study was two fold: (1) to investigate trajectories of drinking problems(CAGE) among the Korean elderly(age$${\geq_-}65$$); and (2) to identify the predicting factors for the intercept and the slope of alcohol problems using multi-level growth curve model. Data come from three waves(1st wave(2006)~3rd wave(2008) of the Korea Welfare Panel(KWP) study. The results indicated that the levels of drinking problems decreased over time and that age, gender, marital status, religion, poverty, self-rated health, and social relationship satisfaction were associated with the baseline CAGE. Further analysis showed that social relationship satisfaction affected the declining slope of drinking problems over time. Specifically, among those who satisfied social relationship, there was a sharp decline of CAGE over time. Overall findings highlight the importance of developing and implementing effective alcohol prevention programs for the elderly in the community settings to mitigate the harmful effects of various psycho-social stressors. Especially, programs to maintain and form healthy social support network are suggested as critical interventions for prevention as well as recovery of alcohol problems in late life.

Application of Predictive Food Microbiology Model in HACCP System of Milk (우유의 HACCP 시스템에서 Predictive Food Microbiology Model 이용)

  • 박경진;김창남;노우섭;홍종해;천석조
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Predictive food microbiology(PFM) is an emerging area of food microbiology since the later 1980’s. It does apply mathematical models to predict the responses of microorganism to specified environmental variables. Although, at present, PFM models do not completely developed, models can provide very useful information for microbiological responses in HACCP(Hazard Analysis Critical Control Point) system and Risk Assessment. This study illustrates the possible use of PFM models(PMP: Pathogen Modeling Program win5.1) with milk in several elements in the HACCP system, such as conduction of hazard analysis and determination of CCP(Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage fixed factors were pH 6.7, Aw 0.993 and NaCl 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage (Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The variable factor was storage temperature at the range of 4~15$^{\circ}C$ and the fixed factors were pH 6.7, Aw 0.993 and NaC 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage temperature.

  • PDF

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Development of the Monitoring System Model Based on USN for Landslide Detection Using Tilting Sensor (기울기 센서를 이용한 산사태 감지 USN 모니터링 시스템 모델 개발)

  • Kim, Jeong-Seop;Park, Young-Jik;Cheon, Dong-Jin;Jung, Do-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3628-3633
    • /
    • 2012
  • This paper proposes a model of the real time monitoring system based on Ubiquitous Sensor Network (USN) for the detection and prediction of landslides. For this purpose, the real time monitoring system with tilting sensor and USN was set up and the performance was conducted. The performance was accomplished by conducting both field examinations and the experimental evaluation of the monitoring system. The results of this study show that the angle $0^{\circ}$, $-10^{\circ}$, $-20^{\circ}$ and $0{\sim}-30^{\circ}$ of sensor position detected by the sensor module coincide with the data measured from USN monitoring system by giving a sampling time 100[msec]. Consequently, the proposed model of the real time monitoring system with tilting sensor based on USN will be widely used as a monitoring system in the exposure to dangerous landslide regions.

Inundating Disaster Assessment in Coastal Areas Using Urban Flood Model (도시홍수모델을 이용한 해안지역의 침수재해평가)

  • Yoo Hwan-Hee;Kim Weon-Seok;Kim Seong-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • In recent years, a large natural disasters have occurred due to worldwide abnormal weather and the amount of damage has been increased more resulting from high density population and a large-sized buildings of the urbanized area. In this study. we estimate the flooded area according to rainfall probability intensify and sea level in Woreong dong, Masan occurred flood damages by typhoon Maemi using SWMM, a dynamic rainfall-runoff simulation model in urban area, and then analyze the damage of flood expected area through connecting with GIS database. In result, we can predict accurately expected area of inundation according to the rainfall intensity and sea level rise through dividing the study area into sub-area and estimating a flooded area and height using SWMM. We provide also the shelter information available for urban planning and flood risk estimation by landuse in expected flood area. Further research for hazard management system construction linked with web or wireless communication technology expects to increase its application.

Uncertainty Assessment of CANDU Void Reactivity using MCNP-4C with ENDF/B-VII(I) (ENDF/B-VII기반 MCNP-4C를 이용한 CANDU-6 기포반응도 불확실성 평가(I))

  • Hong, S.T.;Kwon, T.A.;Lee, Y.J.;Oh, S.K.;Lee, S.K.;Kim, M.W.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.69-75
    • /
    • 2008
  • 기포반응도는 월성발전소를 비롯한 CANDU형 원자로의 주된 안전성 쟁점사안으로 끊임없이 논의되어 왔다. 이는 설계기준사고가 노심에서 열에너지 불균형이 원인이 되어 기준이상의 핵연료 파손과 방사성물질 누출로 발전할 위험이 있는 사건들로 정의될 때, 사건 진행 과정에 기포반응도 증가는 조기에 운전중단을 실패할 경우 출력폭주로 이어지므로 사건의 결말이 중대사고로 전환될 위험이 크기 때문이다. 본 연구는 공개된 최신 핵자료인 ENDF/B-VII.0를 NJOY.99로 처리한 연속에너지 반응단면적 라이브러리를 구축하고 MCNP-4C에 접속하여 37봉 천연우라늄 핵연료다발의 표준노심격자에 대한 기포반응도를 시뮬레이션하여, 지금까지 각종문헌에 제시된 값들과 비교, 종합하므로 내제된 불확실성을 추정하는 내용이다. ENDF/B-VII.0 기반 MCNP-4C의 CANDU 노심격자 모델은 동일한 핵자료와 핵종농도를 사용한 WIMS-IAEA 모델과 비교할 때, 초기 노심의 임계도 오차 약 3.51mk가 연소 진행에 따라 $7.5\times10^{-4}mk$/MWD/teU의 비율로 감소하는 것으로 나타났다. 또한 MCNP-4C 예측기포반응도는 초기노심에서 기포율 50% 및 100%에 대해 각각 8.38 및 15.96mk, 평형노심에서 7.68 및 14.72mk로 계산된다. 이는 월성 2, 3, 4 FSAR의 초기노심 및 평형노심에서 100% 기포상태에 대한 값, 약15.0 및 10.6mk와 비교할 때, 초기노심은 약 1.0mk 평형노심은 약4, 1mk 보수적이지만, 다른 연구결과들과는 최대오차 ${\pm}1{\sim}2mk$ 이내에서 잘 일치하는 것으로 평가되었다. 본 연구는 CANDU 노심의 기포반응도 불확실성 요인의 규명 및 영향평가를 위한 노력의 일부로서 앞으로 감속재의 붕산농도 변화, 감속재 및 냉각재의 중수 순도 변화, 기기노화에 의한 격자 구조 및 물성 변화, 중성자속 및 출력 분포 불균형, 반응도조절장치의 위치, 등 주요 설계변수의 변화에 대한 반응도영향 분석연구를 계속할 계획이다.

  • PDF

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.