• 제목/요약/키워드: 위키피디아 카테고리

검색결과 8건 처리시간 0.024초

위키피디아 카테고리 구조를 이용한 상하위 관계 추출 (ISA Relation Extraction from Wikipedia Category Structure)

  • 최동현;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.1-5
    • /
    • 2009
  • 상하위 관계 자동 추출은 분류체계를 자동 구축하는 데 있어서 핵심적인 내용이며, 이렇게 자동으로 구축된 분류 체계는 정보 추출과 같은 여러 가지 분야에 있어서 중요하게 사용된다. 본 논문에서는 위키피디아 카테고리 구조로부터 상하위 관계를 추출하는 방식에 대하여 제안한다. 본 논문에서는 판별하고자하는 위키피디아 카테고리 구조뿐만이 아닌, 그와 관련된 다른 위키피디아 카테고리 구조까지 고려하여 카테고리 이름에 나타난 토큰들간의 수식 그래프를 구축한 후, 그래프 분석 알고리즘을 통하여 각 카테고리 구조가 상하위 관계일 가능성에 대한 점수를 매긴다. 실험 결과, 본 알고리즘은 기존의 연구로 상하위 관계임을 판별할 수 없었던 일부 카테고리 구조에 대하여 성공적으로 상하위 관계인지를 판별하였다.

  • PDF

집단지성을 활용한 시소러스 갱신에 관한 연구: 위키피디아를 중심으로 (Thesaurus Updating Using Collective Intelligence: Based on Wikipedia Encyclopedia)

  • 한승희
    • 정보관리학회지
    • /
    • 제26권3호
    • /
    • pp.25-43
    • /
    • 2009
  • 이 연구에서는 위키피디아를 활용하여 시소러스를 갱신하고, 그 결과를 평가함으로써 시소러스 갱신에 있어 집단지성의 활용가능성에 대해 확인하고자 하였다. ASIS&T 시소러스를 대상으로 시소러스를 갱신한 결과, 용어 포괄성의 측면에서 ASIS&T 시소러스에 비해 위키 시소러스가 우수한 것으로 나타났다. 또한, 갱신된 시소러스를 평가한 결과, 위키피디아가 시소러스 갱신에 활용될 수 있음이 증명되었다. 특히, 리디렉션, 카테고리, 상호 링크로 요약되는 위키피디아의 구조적 특성은 시소러스의 의미관계를 추출하는 데 있어 적합하다는 것을 확인하였다. 이 연구의 결과를 일반화하기 위해 다국어 시소러스를 포함한 다양한 시소러스를 대상으로 적용해 볼 필요가 있다.

국가별 관심도 측정을 위한 온톨로지 기반 위키피디아 사용 데이터 분석 (An Ontology-based Analysis of Wikipedia Usage Data for Measuring degree-of-interest in Country)

  • 김현희;조진남;김동건
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.43-53
    • /
    • 2014
  • 본 논문에서는 위키피디아 사용 데이터를 분석하여 국가별 관심도를 측정하는 기법을 제시하였다. 먼저 해당 국가에 대한 분야별 관심도를 측정하기 위해서 위키피디아 카테고리로부터 개념 계층 구조를 추출하여 관심도 온톨로지를 구축하였다. 관심도 온톨로지는 국가에 대한 관심 분야를 정치, 경제, 사회, 그리고 문화로 분류하고 각 대분류에 대해 다시 세부 분야으로 분류하였다. 다음으로, 특정 국가의 페이지에서 자주 편집된 기사들의 제목을 관심도 온톨로지에 매핑하여 분야별 페이지 뷰를 분석하였다. 마지막으로 한국, 중국, 그리고 일본에 대한 국가별 관심도를 측정하고 국가별로 위키피디아 사용자들의 관심 분야가 다른지 판별하기 위해서 카이 제곱 독립성 검정을 실시하였다. 실험 결과는 위키피디아 사용자들의 관심 분야가 각 국가와 연관성이 있음을 보여준다. 본 연구는 기존의 설문조사 방식으로 국가 이미지를 측정하는 경우보다 적시에 그리고 유연하게 분야별 관심도를 측정할 수 있는 방안을 제시하며, 위키피디아 사용 데이터 분석 결과를 국가 이미지 개선을 위해 분야별로 재고할 방향을 제시한다.

위키피디아를 이용한 분류자질 선정에 관한 연구 (An Experimental Study on Feature Selection Using Wikipedia for Text Categorization)

  • 김용환;정영미
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.155-171
    • /
    • 2012
  • 텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.

위키피디아 인물 아카이브 서비스 개선을 위한 분석 연구 (Improving the Biography Archive Service of Wikipedia)

  • 최상희
    • 한국문헌정보학회지
    • /
    • 제52권1호
    • /
    • pp.447-467
    • /
    • 2018
  • 인물에 대한 기록정보는 사회의 주요 분야에서 특정기준에 맞는 유명한 인물에 한정하여 정보를 수집, 가공, 제공하는 인물데이터베이스 형태가 일반적이었으나 최근 위키피디아와 같이 이용자들이 참여하여 다양한 인물에 대하여 자유롭게 서술하며 디지털 아카이브로 축적하는 체제가 활성화되고 있다. 이 연구는 위키피디아 바이오그래피 포털에서 범죄자, 교수, 영화감독 카테고리에서 인물 유형별로 500건의 데이터를 각각 수집하여 서술된 내용간 유형별 차별성이 있는지 계량적으로 분석하였다. 용어의 빈도 분석과 차별지수 분석을 수행한 결과 차별지수가 각 유형별로 특화되어 있는 내용을 표현하는데 효과적인 것으로 나타났다. 이 연구에서는 차별지수값이 높은 상위 100개의 용어와 세 유형에 공통적으로 출현한 용어 고빈도어 100개를 워드 클라우드 형태로 활용하여 특정 유형의 인물에 대하여 서술하는 이용자와 이를 승인하는 에디터가 참조할 수 있는 가이드를 제시하고자 하였다.

영어 위키피디아 페이지뷰를 통한 한중일 국가 인지도 비교 (A study on the nation images of the big three exporting countries in East Asia shown in Wikipedia English-Edition)

  • 이영환;전희주;송영화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1071-1085
    • /
    • 2015
  • 본 연구에서 우리는 인터넷 상에서 경쟁국과의 경쟁력을 제고 할 수 있는 국가정책 수립이나 국가정책 수행 평가 등에 사용할 수 있는 실시간으로 국가이미지를 추출하고자 하였다. 이를 위하여 여러 선행연구와 위키피디아에 정의된 카테고리를 참고하여 온라인 특성을 고려한 국가이미지에 대한 온톨로지 구축하였다. 이렇게 구축된 온톨로지는 국가이미지를 위한 소셜미디어를 장단점을 고려하여 선택된 영어판 위키피디아 상에서 최근 6년간 한중일 삼국의 국가이미지를 추출하는데 적용되었다. 추출된 삼국의 국가이미지의 차이를 시각화하여 분석하기 위하여 대응분석 (correspondence analysis)으로 한 중 일 3국 간의 정치, 사회, 문화, 경제 인지도 간의 상대적인 관련성을 표현하고 분석하였다. 삼국의 이미지 분석 결과는 다음과 같다. 대응분석을 이용한 삼국의 이미지 분석 결과 각 나라를 대표하는 이미지가 합리적으로 도출되었음이 확인되었다. 또한 과거 정책의 변화와 이미지 변화를 검증한 결과 정책의 변화의 성공과 실패를 검증할 수 있음을 확인하였다. 따라서 국가정책 수립이나 수행평가 등에 사용할 수 있음을 확인하였다.

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.113-120
    • /
    • 2024
  • 정보통신 기술이 발전함에 따라 우리는 일상에서 다양한 형태의 데이터를 손쉽게 생성하고 있다. 이처럼 방대한 데이터를 효율적으로 관리하려면, 체계적인 카테고리별 분류가 필수적이다. 효율적인 검색과 탐색을 위해서 데이터는 트리 형태의 계층적 구조인 범주 트리로 조직화되는데, 이는 뉴스 웹사이트나 위키피디아에서 자주 볼 수 있는 구조이다. 이에 따라 방대한 양의 문서를 범주 트리의 단말 노드로 분류하는 다양한 기법들이 제안되었다. 그러나 범주 트리를 대상으로 하는 문서 분류기법들은 범주 트리의 높이가 증가할수록 단말 노드의 수가 기하급수적으로 늘어나고 루트 노드부터 단말 노드까지의 길이가 길어져서 오분류 가능성이 증가하며, 결국 분류 정확도의 저하로 이어진다. 그러므로 본 연구에서는 사용자의 요구 분류 정확도를 만족시키면서 세분화된 분류를 구현할 수 있는 새로운 노드 확장 기반 분류 알고리즘을 제안한다. 제안 기법은 탐욕적 접근법을 활용하여 높은 분류정확도를 갖는 노드를 우선적으로 확장함으로써, 범주 트리의 분류 정확도를 극대화한다. 실데이터를 이용한 실험 결과는 제안 기법이 단순 방법보다 향상된 성능을 제공함을 입증한다.

온라인 지식공유의 참여정도: 위키피디아에 대한 행태적 접근 (Participation Level in Online Knowledge Sharing: Behavioral Approach on Wikipedia)

  • 박현정;이홍주;김종우
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.97-121
    • /
    • 2013
  • 급변하는 환경 속에서 지속적인 경쟁우위와 혁신을 위한 지식의 중요성이 증대되면서, 그 동안 지식공유에 관한 많은 연구들이 있었다. 그런데, 이러한 연구들의 대부분이 응답자의 인지오차가 내재된 서베이에 의존해왔다. 본 연구는 대표적인 온라인 지식협업 커뮤니티인 위키피디아 유저들의 온라인 행위만을 토대로 지식공유 참여정도에 대한 행위 특성들간의 관계를 도출하였다. 그런데, 유저들의 편집 참여 패턴이 서로 다르기 때문에 편집횟수는 같아도 재방문기간은 달라질 수 있고 이에 따라 지식공유 결과가 달라질 수 있으므로, 지식공유 참여정도를 아티클 편집 참여횟수와 재방문기간의 두 가지 관점에서 접근하였다. 지식공유 참여정도에 영향을 미치는 행위특성으로는 위키 플랫폼에서 관찰이 가능한, 공적인 토론툴인 아티클 톡과 사적인 메시징 툴인 유저 톡 참여여부 및 정도, 그리고 커뮤니티 등록여부를 사용하였다. 행위 분석은 먼저, 행위특성 차원에 의한 유저 카테고리별 참여정도를 비교하였고, 행위 특성의 정도를 반영하는 독립변수들과 참여정도를 나타내는 종속변수간의 관계에 대한 로버스트 회귀분석을 수행하였다. 특히, 연구가설을 설정하는 단계에서 온라인 환경에 적합한 모티베이션 이론을 도입함으로써, 온라인 지식공유 참여정도에 관한 이론적인 설명 모델을 제시하였다. 결론적으로, 본 연구는 이론적인 시사점 외에 다음과 같은 실제적인 행위 결과를 얻었다. 첫째, 공적인 토론 및 사적인 메시징 참여와 지식공유 참여정도간에는 양의 관계가 성립한다. 둘째, 공적인 토론이 사적인 메시징 보다 지식공유 참여정도에 더 큰 영향력을 미친다. 셋째, 아티클 편집 참여횟수에 대해서는 공적인 토론과 사적인 메시징의 시너지 효과가 존재하는 반면에, 재방문기간에 대해서는 아주 약한 음의 상호작용효과를 나타낸다. 넷째, 커뮤니티 등록 여부는 재방문기간에 대해서는 절대적인 양의 영향력을 미치지만, 실질적인 편집 참여횟수에 대해서는 유의한 영향력을 나타내지 않는다. 다섯째, 사적인 메시징에 의한 관계성을 고려할 때, 관계의 범위보다는 빈도 또는 깊이가 더 중요한 것으로 보인다.