• Title/Summary/Keyword: 위치결정 스테이지

Search Result 49, Processing Time 0.025 seconds

A Position Decision Experiment in Ball-screw Driven Linear Stage using a Photomicrosensor (포토 마이크로 센서를 이용한 볼나사 구동 리니어 스테이지의 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.463-467
    • /
    • 2014
  • High precision machining technology has become one of the most important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though ball-screw driven linear stages equipped with linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a photo micro sensor as a home switch of a ball-screw driven linear stage by using a capacitance probe.

Analysis and compensation of Repeatability for Ultra-precision Stage (초정밀 스테이지의 반복정밀도 분석 및 보정)

  • 박종하;황주호;박천홍;홍준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.800-803
    • /
    • 2004
  • The refractive index of the laser interferometer is compensated using the simultaneously measured variations of room temperature and humidity in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.12$\mu$m to 0.17$\mu$m by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of anaerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.15$\mu$m. English here.

  • PDF

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

Improvement of the Laser Interferometer Error in the Positioning Accuracy Measurement (레이저간섭계의 위치결정정밀도 측정오차 개선)

  • 황주호;박천홍;이찬홍;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.167-173
    • /
    • 2004
  • The heterodyne He-Ne laser interferometer is the most widely used sensing unit to measure the position error. It measures the positioning error from the displacement of a moving reflector in terms of the wave length. But, the wave length is affected by the variation of atmospheric temperature. Temperature variation of 1$^\circ C$ results in the measuring error of 1ppm. In this paper, for measuring more accurately the position error of the ultra precision stage, the refractive index compensation method is introduced. The wave length of the laser interferometer is compensated using the simultaneously measured room temperature variations in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur$\circledR$ plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.34${\mu}m$ to 0.11${\mu}m$ by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of an aerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.1${\mu}m$.

Optimal Design Techniques of the Ultra Precision Cutting Unit through using Optimized Bearing positioning and Latest Lubrication Systems (최적베어링위치결정과 최신의 윤활 시스템을 적용한 초정밀 절삭 유닛의 최적설계기술)

  • Park, Dae-Kwang;Cho, Young-Tae;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.15-22
    • /
    • 2014
  • With a conventional positioning apparatus, it is very difficult simultaneously to achieve desired driving ranges and precision levels at the sub-micrometer level. Generally, a lead screw and friction drive have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

Dynamic Modeling and Input Shaping Control of a Positioning Stage (위치결정 스테이지에 대한 동적 모델링과 입력성형 제어)

  • Park, S.W.;Hong, S.W.;Choi, H.S.;Jang, J.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • This paper presents the dynamic analysis and input shaping control of a positioning stage. Vibration characteristics of the positioning stage are affected not only by the structural dynamics but also by the servo actuators that consist of the mechanism; driving motor and controller. This paper proposes an integrated dynamic model to accommodate both the structural dynamics and the servo actuators. Theoretical modal analysis with a commercial finite element code is carried out to investigate the dynamic characteristics of the experimental positioning stage. Experiments are performed to validate the theoretical modal analysis and estimate the equivalent stiffness due to the servo actuators. This paper deals with an input shaping scheme to suppress vibration of the positioning stage. Input shapers are systematically implemented for the positioning stage in consideration of its dynamics. The effects of servo control gain are also investigated. The experiments show that input shaping effectively removes residual vibrations and then improves the performance of positioning stage.

Security of Image Information using Steganography and QR Code in IoT (IoT에서 스테가노그라피와 QR 코드를 이용한 영상 정보의 보안)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • The security of the image information is very important in many areas of the IoT(Internet of Things), and study a number of ways to display the security (copyright, etc.). In this paper, information of image that is used by the IoT is converted to a DCT(Discrete Cosine Transform) and QC(Quantization Coefficient). And watermark (message) is to create a new encoded message(WMQR) through a QR Code. QC and WMQR applies LSB steganography techniques, can get the security (copyright, etc.) of image information. LSB steganographic techniques may be inserted according to a message (Watermark) to determine the location (Secret Key). The encoded image is sent to the recipient via the Internet. The reverse process can be obtained image and a QR code, a watermark (Message). A method for extracting a watermark from the security of the image information is coded using only the image and Secret Key, through the DCT and quantization process, so obtained by separating the watermark (Message) for the image. In this paper, we were able to improve the security of the method of image information, the image quality of the image by the simulations (PSNR), in turn, benefits were also normalized correlation (NC) and security.

Development of the Precision Positioning Mechanism by Nano Displacement Magnification Device (나노 변위확대기구의 정밀위치결정기구에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Zhao, Zhijun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • A new precision positioning mechanism for stage was been developed by Displacement Magnification Device(DMD) in this paper. The DMD was composed of the beam and multilayer piezoelectric actuators. The theoretical and experimental analysis of DMD to enlarge displacement more then 50times were discussed. And the 2-axis stage by using displacement amplification apparatus was added in the new DMD, and it was able to do it through finite element analysis and experiment. As the results, the magnification of DMD can be obtained about $100{mu}m$ displacement to the 10V input voltage($1.5{mu}m$). And the about 50nm of linearity error in the $30{mu}m$ measurement range and 20times of the amplification in displacement can be measured. In addition, the experimental results are confirmed the possibility of millimeter displacement characteristics and correspond to finite element analysis results.

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.