• Title/Summary/Keyword: 위성위치 확인시스템

Search Result 164, Processing Time 0.021 seconds

Output SINR Analysis of GPS Adaptive Interference Canceler Based on Modified Despreader (변형된 역확산기 기반의 GPS 적응 간섭제거기의 출력 SINR 해석)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.195-202
    • /
    • 2014
  • The Global Positioning System (GPS), which has various military and commercial applications, is designed to estimate the location of the specific user or object. In order to accurately estimate the location, GPS requires at least four satellite signals. The GPS receiver operates on extremely low signal-to-noise ratio (SNR) environment and it may suffer from various interference signals with the extremely high power. In this paper, we introduce a blind adaptive receiver based on the modified despreader, which suppress interference signals and detect GPS signals of interest without requiring explicit angle-of-arrival (AOA) information. We, also, provide the mathematical analysis for the signal-to-interference and noise ratio (SINR) of the modified despeader beamformer output. A representative computer simulation example is presented to illustrate the interference suppression performance of the considered GPS receiver and mathematical analysis of the SINR.

The Study of Implementation of SignBoard Receiving DARC for Vehicle 2. The Implementation of Sign Board Located Based Information (차량용 FM 부가방송 수신 전광판의 구현에 관한 연구 2. 위치기반 정보를 표시하는 전광판 구현)

  • 최재석;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1175-1180
    • /
    • 2002
  • In this paper, we implemented the sign board that is able to display the located based information by adding the GPS module to the board that display the DARC information and user`s message. The global positioning information from GPS module gets more correct by DGPS from DARC module. This information help this system select the located based information for broadcasting. From the experiment, we confirmed that this system displayed user`s data, DARC information data and located based information.

Analysis of Geolocation Accuracy of Precision Image Processing System developed for CAS-500 (국토관측위성용 정밀영상생성시스템의 위치정확도 분석)

  • Lee, Yoojin;Park, Hyeongjun;Kim, Hye-Sung;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.893-906
    • /
    • 2020
  • This paper reports on the analysis of the location accuracy of a precision image generation system manufactured for CAS 500. The planned launch date of the CAS 500 is 2021, and since it has not yet been launched, the analysis was performed using KOMPSAT-3A satellite images having similar specifications to the CAS 500. In this paper, we have checked the geolocation accuracy of initial sensor model, the model point geolocation accuracy of the precise sensor model, the geolocation accuracy of the precise sensor model using the check point, and the geolocation accuracy of the precise orthoimage using 30 images of the Korean Peninsula. In this study, the target geolocation accuracy is to have an RMSE within 2 pixels when an accurate ground control point is secured. As a result, it was confirmed that the geolocation accuracy of the precision sensor model using the checkpoint was about 1.85 pixels in South Korea and about 2.04 pixels in North Korea, and the geolocation accuracy of the precise orthoimage was about 1.15 m in South Korea and about 3.23 m in North Korea. Overall, it was confirmed that the accuracy of North Korea was low compared to that of South Korea, and this was confirmed to have affected the measured accuracy because the GCP (Ground Control Point) quality of the North Korea images was poor compared to that of South Korea. In addition, it was confirmed that the accuracy of the precision orthoimage was slightly lower than that of precision sensor medel, especially in North Korea. It was judged that this occurred from the error of the DTM (Digital Terrain Model) used for orthogonal correction. In addition to the causes suggested by this paper, additional studies should be conducted on factors that may affect the position accuracy.

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS (러시아의 GLONASS 항법 파라미터 및 성능 분석)

  • Choi, Chang-Mook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

Safety Improvement Test of a GNSS-based AGV (위성항법 기반 AGV의 안전성 향상 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Han, Ji-Ae;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.648-654
    • /
    • 2010
  • In this paper, a navigation system was designed, and performance tested in order to confirm the safety improvement of the GNSS(Global Navigation Satellite System)-based AGV(Autonomous Guided Vehicle) which used only position information on of GNSS. We developed DR(Dead Reckoning) navigation system that involve the use of GNSS abnormal positoning error detection and GNSS signal outage. The test results show that GNSS positioning error is detection can be archived with an error of more than 0.15m. In addition, the DR driving position error is 1.5m for an 8s GNSS positioning service outage.

Indoor positioning scheme using GPS equipped outdoor terminals (외부 GPS 모바일 단말기를 이용한 실내 위치 추적 기법)

  • Cho, Hyung-Min;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.6-8
    • /
    • 2010
  • 최근 들어 위치 기반 서비스(Location Based Service)는 치안, 인명 구조, 물류 추적, 길안내 등 다양한 분야로 적용 가능성 때문에 많은 관심을 받고 있는 기술이다. 스마트 폰과 같은 모바일 단말기의 보급이 가속화되면서 사용자는 위치 정보를 이용한 각종 서비스에 대한 요구가 늘어나고 관련 산업의 사업성이 폭발적으로 증가하고 있는 추세다. 실외 위치 추적 기법은 인공위성을 이용한 GPS(Global Positioning System) 기법이 시장을 거의 평정하여 이에 수렴해 가고 있는 상황이고 실제로 많은 상용 제품이 존재하고 있다. 하지만 실내에는 인공위성 신호가 직접 전해 지지 못하는 상황이기 때문에 이와 다른 기법이 존재하나 아직 상용화하기에 그 정확도와 기술력이 부족한 것이 현실이다. 본 논문에서는 건물 밖에 존재하는 GPS 기능이 탑재된 모바일 단말기를 이용하여 실내에 존재하는 모바일 단말기와 협력 통신(Cooperative Communication)하여 위치를 추적하는 기법을 제안한다. 최근 들어 GPS 장비의 단가 하락으로 이 기능을 가지고 있는 모바일 단말기가 증가하고 있는 추세이기 때문에 실내 위치 추적 시스템을 구축하기 위해 별도의 장비를 설치하지 않아도 된다는 것이 이 기법의 가장 큰 장점이다. 시뮬레이션의 결과를 통해 본 기법의 효용성을 확인해보았다.

  • PDF

An Analysis of the Navigation Parameters of Japanese DGNSS-MSAS (일본의 DGNSS인 MSAS 항법파라미터 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1619-1625
    • /
    • 2017
  • Civil global navigation satellite system (GNSS) does not meet user performance requirements for specific PNT (Positioning, Navigation, and Time) applications. Therefore, various differential systems are used to augment GNSS for improving positioning accuracy and integrity. The MTSAT satellite augmentation system (MSAS) is the Japanese satellite based augmentation system. This paper is for analyzing the characteristics of Japanese MSAS in Korean peninsula. First of all, it was done for analyzing not only DGNSS navigation signal but also the navigation parameter through simulation and experimental tests. As a result of data analyses, the sufficient navigation satellites to determine 3-D position based on DGNSS are simultaneously available at MSAS monitering station and the southern region of Korean peninsula. It was verified that the carrier to noise signals are stable to maintain the reliable 3-D position and that the level of 2m (2drms) accuracy is very similar to the ordinary worldwide DGNSS as well.

DEVELOPMENT AND ANALYSIS OF IMAGE REGISTRATION PROGRAM FOR THE COMMUNICATION, OCEAN, METEOROLOGICAL SATELLITE(COMS) (통신해양기상위성의 영상위치유지 성능평가 프로그램 개발 및 분석)

  • Lee, Un-Seob;Choi, Yoon-Hyuk;Park, Sang-Young;Bang, Hyo-Choong;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.235-248
    • /
    • 2007
  • We developed a software for simulations and analyses of the Image Navigation and Registration (INR) system, and compares the characteristics of Image Motion Compensation (IMC) algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC) algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS).

Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite (정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.661-673
    • /
    • 2014
  • In this paper, a precise orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute), in which optical tracking data of a geostationary satellite was used. The real optical tracking data provided by ESA(European Space Agency) for the ARTEMIS geostationary satellite was used. And orbit determination error was approximately 420 m compared to that of the ESA's orbit determination result from the same optical tracking data. In addition, orbit prediction was conducted based on the orbit determination result with optical tracking data for 4 days, and the position error for the orbit prediction during 3 days was approximately 500~600 m compared to that of ESA's result. These results imply that the performance of the KARISMA's orbit determination function is suitable to apply to the collision risk assessment for the space debris.

Development and performance evaluation of GPS/PL simulator for UAV landing (무인항공기 착륙용 GPS/PL 시뮬레이터 설계 및 성능 평가)

  • Lee, Geon-Woo;Kim, Yong-Hyun;Choi, Jin-Gyu;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Automatic landing performance of UAV can be enhanced by adding Pseudolite(PL) to GPS. However, it is very hard to install and operate PL with confidence because GPS satellites are moving and the landing zone are usually changeable. The coverage and accuracy of combined GPS and PL can be estimated by using simulator and the correct information is very crucial to UAV operation. In this paper, design, implementation and evaluation of GPS/PL simulator for UAV landing are given. A very realistic coverage estimation is obtained using GIS data and ray launching method with considerations of the transmitter power level, altitude of UAV, number and location of PL. The expected accuracy is estimated using DOP and NSP computed using both GPS and PL. The performance of simulator is evaluated by comparing with the results of a real GPS receiver, and the certified simulator shows the required accuracy for UAV landing can be easily met by proper installation of at least 2 PLs.