• 제목/요약/키워드: 위성용 광학계 정렬

검색결과 8건 처리시간 0.024초

컴퓨터를 이용한 지구관측 카메라의 광학정렬 (Computer-Aided Alignment of an Earth Observation Camera)

  • 김도형;최영완;강명석;김이을;양호순
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.142-146
    • /
    • 2004
  • 인공위성용 지구관측 카메라나 천문관측 망원경에는 무게와 부피의 제약 때문에 Cassegrain 방식 망원경이 많이 쓰인다. 이와 같은 위성용 광학계의 성공적인 임무 수행을 위해서는 광학계의 정밀 정렬이 필수적이다. 본 논문에서는 인공위생용 지구관측 카메라인 MAC (Medium-sized Aperture Camera)의 조립 과정에 적용된 컴퓨터를 이용한 광학정렬 방법의 모사와 정렬실험 결과를 정리한다.

소형 위성용 고해상도 광학카메라의 광학정렬 (Optical alignment of a high-resolution optical earth observation camera for small satellites)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • 한국광학회지
    • /
    • 제15권4호
    • /
    • pp.391-396
    • /
    • 2004
  • 인공위성용 지구관측 카메라나 우주관측 망원경에는 크기와 무게의 제약 때문에 Cassegrain 방식의 망원경이 많이 쓰인다. 이와 같은 우주광학계의 성공적인 임무수행을 위해서는 망원경부의 정밀한 광학정렬이 매우 중요하다. 본 논문에서는 정렬 정밀도에 따른 Cassegrain 방식 망원경부의 광학정렬 방법 중, 간섭무늬를 이용한 방법, 파면오차를 이용한 방법, 역최적화 광학정렬 방법 등을 모사를 통해 제시하고, 현재 개발 중인 구경 300 mm급 소형 위성용 카메라에 적용한 광학정렬 실험 결과를 정리한다.

소형위성용 모터 구동형 포커싱 메커니즘 (A Motor-Driven Focusing Mechanism for Small Satellite)

  • 정진원;최준우;이동규;황재혁;김병규
    • 항공우주시스템공학회지
    • /
    • 제12권4호
    • /
    • pp.75-80
    • /
    • 2018
  • 위성용 카메라의 경우 광학계의 초점을 제어하기 위한 포커싱 메커니즘이 필수적이다. 그러나 국내의 위성용 광학계 포커싱 메커니즘 관련 연구는 시작 단계이며, 관련 보유 기술 또한 열제어형에 국한되어있다. 따라서 본 논문에서는 소형위성용 광학계에 적용 가능한 모터 구동형 포커싱 메커니즘을 제안하였다. 제안된 메커니즘은 모터 구동에 의해 secondary mirror에 z축 변위를 발생시키도록 설계하였다. 또한 서포터에 flexure hinge를 설치하여 사전하중을 가하도록 하여 메커니즘내 부품간 제작공차 및 조립공차로 인한 정렬도 오차를 최소화하도록 하였다. 메커니즘 제작 후 LVDT 센서(linear variable differential transformer sensor)와 레이저 변위측정기로 정렬도(de-space, de-center, tilt)를 측정한 결과 소형위성광학계에 적용 가능한 수준의 정렬도를 갖는 것을 확인하였다.

컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정 (Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite)

  • 강혜은;송재봉;양호순;김학용
    • 한국광학회지
    • /
    • 제28권4호
    • /
    • pp.146-152
    • /
    • 2017
  • 우주용 인공위성 카메라를 구성하는 반사경의 정렬은 광학계의 고분해능, 고성능을 얻기 위한 중요한 과정 중 하나이다. 반사경들의 상호정렬에는 큐브미러(cube mirror)가 대신 사용되기 때문에, 각 반사경과 해당 큐브미러 간의 상호위치관계 정보가 우선 필요하다. 따라서 우주용 카메라 반사경들의 정렬을 위해 각 반사경의 정점과 해당 큐브미러의 상대 좌표값을 정확하게 측정해야하며, 본 논문에서는 컴퓨터 제작 홀로그램(computer-generated hologram, CGH)의 정렬용 세그먼트와 광섬유를 이용하는 새로운 측정 시스템을 제안함으로써 우주용 카메라를 구성하는 반사경의 정점을 요구조건 이내로 측정할 수 있었다. 측정 시스템은 광학계 평가용 간섭계, CGH, 광섬유, 반사경으로 구성되어 있으며, 최종적으로 데오도라이트를 이용해 큐브미러를 기준으로 주 반사경의 정점에 위치한 광섬유 끝단의 3차원 상대 좌표값을 $25{\mu}m$ 이하의 정밀도로 측정할 수 있었다.

피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정 (Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer)

  • 장하림;최재혁;송재봉;김학용
    • 한국광학회지
    • /
    • 제34권1호
    • /
    • pp.22-30
    • /
    • 2023
  • 조각거울은 우주용 관측위성의 주반사경을 크게 제작하기 위한 방법 중 하나로서, 여러 개의 작은 거울들을 이어 하나의 큰 거울로 이용하는 방법이다. 여러 개의 거울들을 하나의 거울로 정렬하기 위해서는 인접한 거울들 간에 기울기 오차(tilt)와 광축방향 정렬오차(piston)가 없어야 한다. 기울기 오차와 광축방향 정렬오차를 해결해야 여러 개의 거울이 한 방향으로 빛을 모으고, 이를 통해 뚜렷한 이미지를 얻을 수 있기 때문에 조각거울의 정렬오차를 나노미터 수준으로 측정할 수 있는 파면 센서가 필요하다. 기울기 오차는 조각거울을 통해 얻은 이미지를 통해 어떤 거울의 기울기가 틀어졌는지 쉽게 확인할 수 있는 반면, 광축방향 정렬오차는 이미지의 질은 떨어뜨리지만 드러나는 뚜렷한 특징이 없기 때문에 같은 방법으로 감지하기 어려워 세밀한 측정이 매우 중요하다. 이를 위해 본 논문에서는 지상용 초기 정렬시 많은 이점을 갖는 광학계 평가용 간섭계 중 하나인 피조 간섭계를 이용한다. 피조 간섭계를 사용한 복수 조각거울의 광축방향 정렬오차 측정을 위한 기초 연구로서 단일 조각거울의 광축방향 변위 오차를 측정하고, 측정불확도를 계산해서 피조 간섭계의 광축방향 변위 오차 측정 한계를 규명한다. 또한 수식을 통해 조각거울 광축방향 변위 오차와 간섭계로 측정한 표면 초점오차(defocus)의 관계를 계산했고, 도출한 수식의 타당성을 실험으로 검증했다.

소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계 (Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera)

  • 홍대기;황재혁
    • 항공우주시스템공학회지
    • /
    • 제12권3호
    • /
    • pp.9-17
    • /
    • 2018
  • 지구 관측용 소형 위성카메라의 경우, 중대형 위성에 비해 상대적으로 약한 구조 안정성으로 인해 열악한 발사환경 및 우주환경에서 광부품의 정렬오차가 발생하기 쉽다. 발생한 정렬오차는 위성카메라의 광학 성능 저하를 유발시킨다. 본 연구에서는 소형 위성 카메라의 정렬오차를 보상하기 위하여 3축 포커스 메커니즘을 제안하였다. 이 메커니즘은 3개의 압전 작동기로 구성되어 x-축, y-축 틸트 및 디스페이스(De-space) 보정을 수행할 수 있다. 포커스 메커니즘의 설계 요구조건은 슈미트-카세그레인(Schmidt-Cassegrain) 타입의 목표 광학계 설계에서 도출되었다. 부경 정렬오차 보상을 위하여 부 반사경의 뒤에 포커스 메커니즘을 부착하여 부경의 3축 운동을 제어하였다. 이 때 파면오차로 인한 광학 성능 저하를 최소화하기 위한 플렉셔를 Box-Behnken 실험계획법을 통하여 설계하였으며, ANSYS를 이용하여 파면오차 해석을 수행하였다. 제작된 포커스 메커니즘은 작동기의 수학적 모델링, PID 제어기 설계, 서보 제어실험을 통해 서보성능을 검증하였다.

SiC를 이용한 대구경 위성용 망원경 제작 (Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite)

  • 배종인;이행복;김정원;이경묵;김명훈
    • 한국광학회지
    • /
    • 제33권2호
    • /
    • pp.74-83
    • /
    • 2022
  • 위성 관측 카메라용 대구경 초경량 반사광학계를 제작하기 위해 소재 개발부터 최종 시스템 인증시험까지 전 과정을 수행했다. 완성된 비점보정 3반사경 구조의 위성용 반사광학계 망원경은 주반사경의 구경이 700 mm이고, 망원경 전체 질량은 66 kg이다. 광학소재 및 구조물에 적용하기 위한 반응소결법을 개발했고, 이 방법을 이용해서 실리콘 카바이드(silicon carbide, SiC) 재질의 광학 몸체를 제작하고 소결체의 화학특성, 표면특성, 결정구조를 확인했다. 광학 몸체의 기계적, 화학적 성질을 고려한 연마와 코팅 방법을 개발했으며 화학기상증착법을 적용해 SiC 경면 표면 위에 치밀한 SiC 박막을 170 ㎛ 이상 증착함으로써 광학 성능이 우수한 경면을 만들 수 있었다. 반사경 제작 후 반사경과 지지 구조를 조립하고 정렬해서 다양한 광학 시계에 대해 파면 오차를 측정했다. 아울러 우주 환경 및 발사환경에 대한 우주 인증에 맞추어 구성품 및 최종 조립체를 온도와 진동에 대한 환경시험을 실시하여 설계 목표 성능을 달성했음을 확인했다.

특징점 매칭 개선 및 강인추정을 통한 이종해상도 위성영상 자동영상정합 (Automated Image Matching for Satellite Images with Different GSDs through Improved Feature Matching and Robust Estimation)

  • 반승환;김태정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1257-1271
    • /
    • 2022
  • 최근 많은 수의 지구관측용 광학위성이 개발되어 위성영상에 대한 수요가 증가하고 있다. 따라서, 위성영상의 활발한 활용을 위해서 신속한 전처리 과정이 요구된다. 위성영상 정합은 두 영상을 하나의 특정한 좌표계로 변환하여 등록하는 기술로서 원격탐사 분야에서 영상정합 기술은 서로 다른 대역의 영상을 정렬하거나, 두 위성영상 간의 상대적인 위치 오차를 수정하는데 사용된다. 본 논문에서는 서로 다른 Ground Sample Distance (GSD)를 가지는 위성영상 간의 자동 영상정합 방법을 제안하였다. 제안방법은 개선된 특징점 매칭방법과 강인한 변환모델 추정기법을 기반으로 하며, 다음과 같이 5가지 처리과정으로 구성된다: 중첩 영역 계산, 개선된 특징점 탐지, 특징점 매칭, 강인한 변환모델 추정, 영상 리샘플링. 특징점 탐지를 위해서 중첩영역을 추출하여 두 영상의 GSD가 유사하도록 영상 리샘플링을 수행하였다. 특징점 매칭 단계에서는, Oriented FAST and Rotated BRIEF (ORB) 알고리즘을 사용하여 영상정합 성능을 향상시켰다. 영상정합 실험은 KOMPSAT-3A와 RapidEye영상을 실험대상으로 수행되었으며 제안방법의 성능검증은 정성적, 정량적 두 가지 방법으로 수행되었다. 영상정합의 재투영오차는 RapidEye GSD를 기준으로 1.277 (8.3 m)에서 1.608 (10.452 m)의 픽셀 정확도를 보였다. 즉, 결론적으로, 제안방법을 통해 이종해상도 위성영상의 영상정합 가능성을 확인하였다.