• Title/Summary/Keyword: 위성영상특성

Search Result 750, Processing Time 0.03 seconds

The Environmental and Economic Effects of Green Area Loss on Urban Areas (도시지역에서의 녹지상실의 환경적 경제적 효과)

  • Kim, Jae-Ik;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 2006
  • Modeling urban climate caused by land use conversion is critical for human welfare and sustainable development, but has hampered because detailed information on urban characteristics is hard to obtain. With the advantage of satellite observations and the new statistical boundary system, this paper measures the economic and environmental effects of green area loss due to land use conversion in urban areas. To perform this purpose, data were collected from the various sources basic statistical unit data from the National Statistical Office, digital maps from the National Geographic Information Institute, satellite images, and field surveys when necessary. All data (maps and attributes) are built into the geographic information system (GIS). This paper also utilizes Landsat TM 5 imagery of Daegu city to derive vegetation index and to measure average surface temperature. The satellite data were examined using standard image processing software, ERDAS IMAGINE, and the results of the digital processing were presented with ARCVIEW(v.3.3). SAS package was used to perform statistical analyses. This study presents that there exists a strong relationship between land use change and climatic change as well as land price change. Based on results of the analysis, this paper suggests that planners should implement effective tools and policies of urban growth management to detect environmental quality and to make right decisions on policies concerning smart urban growth.

  • PDF

Selecting a Landmark for Repositioning Automated Driving Vehicles in a Tunnel (자율주행 차량의 터널내 측위오차 보정 지원시설 선정)

  • Kim, Hyoungsoo;Kim, Youngmin;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.200-209
    • /
    • 2018
  • This study proposed a method to select existing facilities as a landmark in order to reset accumulated errors of dead reckoning in a tunnel difficult to receive GNSS signals in automated driving. First, related standards and regulations were reviewed in order to survey 'variety' on shapes and installation locations as a feature of facilities. Second, 'recognition' on facilities was examined using image and Lidar sensors. Last, 'regularity' in terms of installation locations and intervals was surveyed through related references. The results of this study selected a fire fighting box / lamp (50m), an evacuation corridor lamp (300m), a lane control system (500m), a maximum / minimum speed limit sign and a jet fan as a candidate landmark to reset positioning errors. Based on those facilities, it was determined that error correction was possible. The results of this study are expected to be used in repositioning of automated driving vehicles in a tunnel.

Analysis of Backscattering Coefficients of Corn Fields Using the First-Order Vector Radiative Transfer Technique (1차 Vector Radiative Transfer 기법을 이용한 옥수수 생육에 따른 후방산란 특성 분석)

  • Kweon, Soon-Koo;Hwang, Ji-Hwan;Park, Sin-Myeong;Hong, Sungwook;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, we analyzed the effect of corn growth on the radar backscattering coefficient. At first, we measured the backscattering coefficients of various corn fields using a polarimetric scatterometer system. The backscattering coefficients of the corn fields were also computed using the 1st-order VRT(Vector Radiative Transfer) model with field-measured input parameters. Then, we analyzed the experimental and numerical backscattering coefficients of corn fields. As a result, we found that the backscatter from an underlying soil layer is dominant for early growing stage. On the other hand, for vegetative stage with a higher LAI(Leaf-Area-Index), the backscatter from vegetation canopy becomes dominant, and its backscattering coefficients increase as incidence angle increases because of the effect of leaf angle distribution. It was also found that the estimated backscattering coefficients agree quite well with the field-measured radar backscattering coefficients with an RMSE(Root Mean Square Error) of 1.32 dB for VV-polarization and 0.99 dB for HH-polarization. Finally, we compared the backscattering characteristics of vegetation and soil layers with various LAI values.

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Inferring Regional Scale Surface Heat Flux around FK KoFlux Site: From One Point Tower Measurement to MM5 Mesoscale Model (FK KoFlux 관측지에서의 지역 규모 열 플럭스의 추정 : 타워 관측에서 MM5 중규모 모형까지)

  • Jinkyu Hong;Hee Choon Lee;Joon Kim;Baekjo Kim;Chonho Cho;Seongju Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.138-149
    • /
    • 2003
  • Korean regional network of tower flux sites, KoFlux, has been initiated to better understand $CO_2$, water and energy exchange between ecosystems and the atmosphere, and to contribute to regional, continental, and global observation networks such as FLUXNET and CEOP. Due to heterogeneous surface characteristics, most of KoFlux towers are located in non-ideal sites. In order to quantify carbon and energy exchange and to scale them up from plot scales to a region scale, applications of various methods combining measurement and modeling are needed. In an attempt to infer regional-scale flux, four methods (i.e., tower flux, convective boundary layer (CBL) budget method, MM5 mesoscale model, and NCAR/NCEP reanalysis data) were employed to estimate sensible heat flux representing different surface areas. Our preliminary results showed that (1) sensible heat flux from the tower in Haenam farmland revealed heterogeneous surface characteristics of the site; (2) sensible heat flux from CBL method was sensitive to the estimation of advection; and (3) MM5 mesoscale model produced regional fluxes that were comparable to tower fluxes. In view of the spatial heterogeneity of the site and inherent differences in spatial scale between the methods, however, the spatial representativeness of tower flux need to be quantified based on footprint climatology, geographic information system, and the patch scale analysis of satellite images of the study site.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula - Expansion of Coastal Waters and Its Effect on Temperature Variations in The South Sea of Korea - (한반도 근해의 해류와 해수 특성 -남해연안수 확장과 수온변화-)

  • NA Jung-Yul;HAN Sang-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.267-279
    • /
    • 1990
  • The temporal and spatial distribution of the coastal cold waters which was formed due to winter colling in the South Sea of Korea was analyzed by IR images from satellite and in situ data from shipboard observations. The coastal waters are known to be consisted of the Yellow Sea Coastal Waters(YSCW) and the South Korean Coastal Waters(SKCW). The former is driven around the Chuja-do and drifted into the Cheju Strait by residual currents, while the latter expands toward offsea by southward wind forcing. The expansion patterns of the SKCW were observed as sinking expansion or drifting expansion such that both were strongly dependent on the surface heat flux conditions. Under the condition of positive heat flux(warmer sea surface) or when the sea surface heat is lost to the atmosphere, the surface water started sinking and eventually expanded toward the open sea causing the cooling of the water column. For the negative heat flux the surface water was just drifted horizontally and expanded seaward and in this case only the surface layer of water was cooled.

  • PDF

Modeling the Spatial Distribution of Roe Deer (Capreolus pygargus) in Jeju Island (제주 노루(Capreolus pygargus)의 서식지 선호도 분석)

  • KIM, A-Reum;LEE, Jae-Min;JANG, Gab-Sue
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.139-151
    • /
    • 2017
  • The habitat preference of roe deers(Capreolus pygargus) in Jeju island, South Korea was analyzed by using their occurrence probability in MaxEnt model in this study. Totally 490 surveying data were gathered and 15 environmental variables were chosen for the model in which 6 variables out of 15 ones were filtered and finally removed because of there being higher correlation(over 0.7 in correlation coefficient). According to the modeling, roe deers were known to prefer the area ranging from 200 to 700 meter and over 1,500 meter in sea level, where there were not many dominant tree and/or dominant vegetation with low density so that understory vegetation can grow well with plentiful sunlight and can be used as a food of herbivore like roe deers. Otherwise, the region ranging from 700 to 1,500 meter was mostly covered with high density vegetation which cut off sunlight trying to penetrate through the dominant vegetation. It can cause a lower density of vegetation on surface, which can not attract to roe deers.

Economic Analysis of Typhoon Surge Floodplain that Using GIS and MD-FDA from Masan Bay, South Korea (MD-FDA와 GIS를 이용한 마산만의 태풍해일 범람구역 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.724-729
    • /
    • 2008
  • In the case of 'MAEMI', the Typhoon which formed in September, 2003, the largest-scale damage of tidal wave was caused by the co-occurrence of Typhoon surge and full tide. Until now Korea has been focusing on the calculating the amount of damage and its restoration to cope with these sea and harbor disasters. It is essential to establish some systematic counterplans to diminish such damages of large-scale tidal invasion on coastal lowlands considering the recent weather conditions of growing scale of typhoons. Therefore, the purpose of this research is to make the counterplans for prevention against disasters fulfilled effectively based on the data conducted by comparing and analyzing the accuracy between observation values and the results of estimating the greatest overflow area according to abnormal tidal levels centered on Masan area where there was the severest damage from tidal wave at that time. It's necessary utilize data like high-resolution satellite image and LiDAR(etc.) for correct analysis data considering geographical characteristics of dangerous area from the storm surge. And we must make a solution to minimize the damage by making data of dangerous section of flood into GIS Database using those data (as stated above) and drawing correcter damage function.

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.