• Title/Summary/Keyword: 위성영상분석

Search Result 1,648, Processing Time 0.031 seconds

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Case Study of Fault Based on Drainage System Analysis in the Namdae Stream, Uljin Area (울진 남대천 유역의 수계분석을 통한 단층 규명 사례 연구)

  • Han, Jong-Gyu;Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.399-412
    • /
    • 2011
  • A DEM (digital elevation model) is produced using a digital topographic map and is now a commonly used tool in geologic surveys. This study aimed to clarify the relationship between knickpoints and faults in the Namdae stream by analyzing a DEM of the area. The Namdae drainage basin was divided into three subbasins (S1, S2 and S3) and their knickpoints developed for the middle to mid-upper regions were extracted from the DEM. The relative steepness Ks and concavity depending on the incision rate was higher in S1 than in S2 and S3 regions. We assumed that the incision rate caused by active erosion resulted from several faults crossing the basins rather than differences in rock types. There are 77 knickpoints in the Namdae drainage area, including the low-ranking branch, and 24 of thses are on the main river system (S1, S2, S3). Of these 77 knickpoints, 27 (38%) are matched by faults, and from the three basins, 13 (54%) correspond with faults, indicating that the knickpoints are connected closely with the faults. For example the average Ks (relative steepness), was 38.8, but in the overlapping area of the Samdang and Doocheon faults the Ks value was 42.99~43.39. We suggest that the faults resulted in geomorphic deformation such as the high-Ksn knickpoints. There was little evdence of relationship between the knickpoints and rock boundaries, with 54% of the knickpoints distributed on the S1, S2, and S3 subbasins. We concluded that the drainage basin knickpoints are the result of fault movement and are a type of geomorphologic deformation that could be useful for surveying Quaternary faults or fault extension.

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.