• Title/Summary/Keyword: 위성신호

Search Result 1,088, Processing Time 0.034 seconds

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Design and Implementation of the Combline Bandpass Filter for the Satellite Transponder using Least-squares Curve-fitting Method (Least-squares Curve-fitting 방법을 이용한 위성중계기용 Combline 대역통과여파기의 설계 및 제작)

  • 정근욱;이재현;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1485-1492
    • /
    • 1994
  • In this paper, we design and implement the Combline Bandpass Filters for the satellite transponder by using the least-squares curve-fitting method. The Combline Bandpass Filters are located front of the mixer and behind of it, which is the component of down converter. Comparing with the filters which have $\lambda$/4 resonance length. Combline Filter has wide range of stop-band by using $\lambda$/8. So, it is useful to the satellite transponder owing to its low mass and small size. The filters described are realized as coupled rectangular coaxial transmission lines. The choice of this type is due to the ease of machining and wide variations in coupling coefficients rather than the use of the round rod resonators. We determine 800 MHz bandwidths for the combline bandpass filters. By using Chebyshev filter function, we design and implement 4-pole combline filters.

  • PDF

Launch and On-orbit Environment Verification Test of Flight Model of Hinge Driving Type Holding and Release Mechanism based on the Burn Wire Release (열선분리방식을 이용한 힌지구동형 구속분리장치 비행모델의 발사 및 궤도환경 검증시험)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.274-280
    • /
    • 2016
  • Hinge driving type holding and release mechanism based on the burn wire release for application of cubesat is main payload of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) to be launched at 2015. It has high constraint force, low shock level as well as surmounting drawbacks of conventional nichrome burn wire release method that has relatively low constraint force and system complexity for application of multi-deployable systems. In this paper, we have proposed a flight model of holding and release mechanism for the verification of the constraint force and deployment status signal acquisition. To validate the effectiveness of the flight model, launch and on-orbit environment verification test have been performed.

Accuracy Analysis of Positioning Supplementary Control Point with the Combined GPS/GLONASS and TS (GPS/GLONASS와 TS 결합에 의한 도근점 측위의 정확도 분석)

  • 박운용;곽두호;김용보;백기석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • In the study, the open area keeping a few visible satellites and the urban area covered with the high building, an electric pole were chosen far evaluation of accuracy of satellite positioning. First, suggest the validity of GPS/GLONASS, TS/RTK-GPS, and compared the accuracy with that of the classical surveying method. As a result, In static relative surveying, the difference of between the known cadastral supplementary control station and that of the acquired is 0.000∼.0006m in GPS alone, GPS/GLONASS, and In the RTK-GPS/TS, 0.010∼0.077m on the non-ambiguity fixed solutions in the urban area 0.008∼0.078m in the open area. it proved to be valid because it is within the allowed connecting errors, i.e 12cm on the baseline of loom in l/l,200 cadastral map.

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing (인공위성 원격탐사를 이용한 대기보정 기술 고찰)

  • Lee, Kwon-Ho;Yum, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.1011-1030
    • /
    • 2019
  • Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.

Blind Beamforming Equalization System Based on MUSIC Algorithm (MUSIC 알고리즘 기반 블라인드 빔포밍 등화 시스템)

  • Kim, Yongguk;Lee, Seung Hwan;Shin, Dong Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.64-72
    • /
    • 2013
  • Blind equalization is a technique that equalizes the received signals without the training sequence. Because of the absence of training sequence, we can increase the bandwidth efficiency due to the blind equalization system. And we must use the blind equalization for removing the ISI in mobile satellite communication receiver. ISI occurs due to mobility of users in mobile satellite communications. Blind equalization is suitable for the mobile satellite communication channels. In this blind equalization, it's very important to improve BER performance to apply the mobile satellite communication system. In this paper, we propose the blind beamforming equalization system using the beamforming, MUSIC algorithm and coordinate change method. We were confirmed by the simulation that the proposed system improves the BER performance.

An Efficient Cooperative Diversity Scheme for Mobile Satellite Broadcasting Services (휴대형 이동위성방송 서비스를 위한 효율적인 협동 다이버시터 기법)

  • Kim, Soo-Young;Kim, Hee-Wook;Park, Un-Hee;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.258-264
    • /
    • 2009
  • In this paper, we propose an efficient cooperative diversity scheme for mobile satellite multimedia broadcasting services. The proposed scheme is a transmit diversity technique to adapt time varying channel conditions, and we do not need any channel quality information from the return link. In the proposed scheme, we utilize space-time block coding (STBC) and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system with several repeaters. The satellite and several repeaters operate in unison to send the encoded signals, so that the receiver may realize diversity gain. The simulation results demonstrate that the proposed scheme can provide highly improved performance.

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.

A Novel Short Delay Multipath Mitigation Algorithm for a GNSS based Land Vehicle in Urban Environment (도심환경에서의 GNSS 기반 육상 이동체를 위한 짧은 지연 다중경로 감쇄 기법)

  • Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.557-565
    • /
    • 2018
  • For GNSS navigation in urban environment, a novel short delay multipath mitigation algorithm is proposed in this paper. This algorithm detects which satellite's signal is the multipath signal by using the constraint that GNSS receiver is equipped in a ground vehicle, then estimate new position after separating the measurement of that satellite. A criterion for detecting and validating the multipath signal depends on the performance grade of the GNSS receiver and the dynamics of the vehicle. In order to evaluate the proposed algorithm, the real data had been collected at the multipath environment of 4 scenarios. By post-processing the real data with both of the multipath mitigation algorithm in the receiver and the proposed algorithm, it can be checked that the position errors were less than 5 meters except the case that the number of visible satellite is lower than 5.

Implementation of Ka-band Satellite Broadcasting/LNB with High Dynamic Range (Ka-band 고감도 위성방송용/LNB 최적화 설계)

  • Mok, Gwang-Yun;Lee, Kyung-Bo;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.66-69
    • /
    • 2016
  • In this paper, we suggests a Ka-band LNB considering next-generation UHD satellite TVRO. Since Ka-band has grater attenuation than Ku-band in atmosphere, we designed the low-noise down-converter to improve receiving sensitivity and to extend a dynamic range of receiver. It aims to compensate a quality of ultra high definition transmission signal for rainfall. The low-noise block diagram consists of a three-staged amplifier (LNA), band-pass filter for deleting image (BPF), mixer and IF when considering nonlinear characteristics in the receiver RF front end module. Also, we showed a LNB through optimization processes affecting dynamic range directly in receiver FEM. Asa resuly of experiment, the gain of low-noise down-converter show between 58.5dB and 60.7dB, the noise figure has a high characteristic as 1.38dB. Finally, the phase noise of local oscillator is -63.10dBc at 100MHz offset frequency.

  • PDF