• Title/Summary/Keyword: 위상 결펼침

Search Result 6, Processing Time 0.02 seconds

Improved Center Array-Sequensing Phase Unwrapping(ICASPU) method for reconstruction of MR phase image (자기공명 위상영상 재구성을 위한 향상된 중심배열 정렬 위상 펼침 방법)

  • Han, Y.H.;Kim, K.S.;Jung, W.B.;Kim, Y.S.;Lee, S.H.;Jung, S.H.;Nam, S.H.;Mun, C.W.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.23-26
    • /
    • 2009
  • This study proposed an improved center array-sequencing phase unwrapping (ICASPU) algorithm. 2% agarose phantom dopped with 0.6mM/l MnCl2 was used with clinical 1.5T MRI system and commercial knee coil. Obtained k-space data(raw-data) was transmitted to PC and reconstructed into phase image with MATLAB software. Previous center array-sequence phase unwrapping algorithm wascompared with proposed ICASP algorithm using second order regression analysis. As a result, we found that the amount of error on proposed ICASPU method is less about 5 times than that of previous CASPU method. In this study, we exploit improved Center array-sequence phase unwrapping algorithm and expect to apply to images including phase informations.

  • PDF

ESPI Simulation for the Vibration Modes of the Thin Right-Angled Plate (얇은 직각판의 진동 모드에 대한 ESPI 시뮬레이션)

  • 장순석
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.509-516
    • /
    • 1999
  • The ESPI (Electronic Speckle Pattern Interferometry) algorithm has been simulated to calculate vibrational modes of a thin right-angled STS304 plate. The phase transformation of the reference wave of the ESPI is carried out only one time during vibration in order to clarify ESPI speckle patterns. Two dimensional vibrational modes are calculated from one ESPI pattern before vibration onset and two ESPI patterns during vibrations but with and without the phase transformation. The ESPI harmonic results are compared with those derived from the finite element method (FEM), and they agree very well. Additionally a phase unwrapping algorithm has been newly developed to derive a displacement map from an ESPI phase map.

  • PDF

A Study on the Determination of Displacement by Applied Laser Measurement (레이저응용계측에 의한 변위 정량화에 관한 연구)

  • 김경석;홍진후;강기수;최지은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • This study discusses a non-contact optical technique, phase shifting electronic speckle pattern interferometry, that is well suited for a deformation measurement. However, the phase shifting method has difficulties for determinating a deformation quantitatively beacuse of the characteristics of arctan function. In order to solve this problem, phase unwrapping methods has been studied during the last few years. In this study, using phase unwrapping based on line by line scanning phase shifted fringe patterns are studied to determinate a deformation quantitatively. Also least square fitting method is applied to reduce noise and improve image resolution.

  • PDF

Preliminary Study on the MR Temperature Mapping using Center Array-Sequencing Phase Unwrapping Algorithm (Center Array-Sequencing 위상펼침 기법의 MR 온도영상 적용에 관한 기초연구)

  • Tan, Kee Chin;Kim, Tae-Hyung;Chun, Song-I;Han, Yong-Hee;Choi, Ki-Seung;Lee, Kwang-Sig;Jun, Jae-Ryang;Eun, Choong-Ki;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2008
  • Purpose : To investigate the feasibility and accuracy of Proton Resonance Frequency (PRF) shift based magnetic resonance (MR) temperature mapping utilizing the self-developed center array-sequencing phase unwrapping (PU) method for non-invasive temperature monitoring. Materials and Methods : The computer simulation was done on the PU algorithm for performance evaluation before further application to MR thermometry. The MR experiments were conducted in two approaches namely PU experiment, and temperature mapping experiment based on the PU technique with all the image postprocessing implemented in MATLAB. A 1.5T MR scanner employing a knee coil with $T2^*$ GRE (Gradient Recalled Echo) pulse sequence were used throughout the experiments. Various subjects such as water phantom, orange, and agarose gel phantom were used for the assessment of the self-developed PU algorithm. The MR temperature mapping experiment was initially attempted on the agarose gel phantom only with the application of a custom-made thermoregulating water pump as the heating source. Heat was generated to the phantom via hot water circulation whilst temperature variation was observed with T-type thermocouple. The PU program was implemented on the reconstructed wrapped phase images prior to map the temperature distribution of subjects. As the temperature change is directly proportional to the phase difference map, the absolute temperature could be estimated from the summation of the computed temperature difference with the measured ambient temperature of subjects. Results : The PU technique successfully recovered and removed the phase wrapping artifacts on MR phase images with various subjects by producing a smooth and continuous phase map thus producing a more reliable temperature map. Conclusion : This work presented a rapid, and robust self-developed center array-sequencing PU algorithm feasible for the application of MR temperature mapping according to the PRF phase shift property.

  • PDF

3-Dimensional Measurement using Digital Holographic Microscope and Phase Unwrapping (디지털 홀로그래피 현미경과 위상 펼침을 이용한 3차원 측정)

  • Cho, Hyung-Jin;Kim, Doo-Chul;Yu, Young-Hun;Jung, Won-Gi;Shin, Sang-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.329-334
    • /
    • 2006
  • We have reconstructed 3-dimensional images by using the digital holographic microscope and the Mask-cut phase unwrapping algorithm. Off-axis holograms recorded with a magnified image of the microscopic object lens and reference beam are numerically reconstructed in amplitude and phase image by the Fresnel diffraction approximation. We have simultaneously reconstructed 2-dimensional and 3-dimensional images of the sub-micrometer objects.

Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images (MR 뇌 영상에서 물리기반 영상 개선 작업을 통한 효율적인 회백질 경계 검출 방법)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.275-282
    • /
    • 2013
  • In medical image processing field, object recognition is usually carried out by computerized processing of various input information such as brightness, shape, and pattern. If the information mentioned does not make sense, however, many limitations could occur with object recognition during computer processing. Therefore, this paper suggests effective object recognition method based on the magnetic resonance (MR) theory to resolve the basic limitations in computer processing. We propose the efficient method of robust gray-white matter segmentation by texture analysis through the Susceptibility Weighted Imaging (SWI) for contrast enhancement. As a result, an average area difference of 5.2%, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.