웹에서 접근하는 정보의 폭발적인 증가에 따라 사용자의 다음 웹 페이지 사용을 예측하는 문제의 중요성이 증가되었다. 사용자의 다음 웹 페이지 접근을 예측하는 방법 중 하나가 딥 러닝 기법이다. 웹 페이지 예측 절차는 데이터 전처리 과정을 통해 웹 로그 정보들을 분석하고 딥 러닝 기법을 이용하여 분석된 웹 로그 결과를 가지고 사용자가 접근할 다음 웹 페이지를 예측한다. 본 논문에서는 웹 페이지 예측을 위한 효율적인 웹 로그 전처리 작업과 분석을 위해 딥 러닝 기법을 사용하는 웹 페이지 예측 프레임워크를 제안한다. 대용량 웹 로그 정보의 전처리 작업 속도를 높이기 위하여 Hadoop 기반 맵/리듀스(MapReduce) 프로그래밍 모델을 사용한다. 또한 웹 로그 정보의 전처리 결과를 이용한 학습과 예측을 위한 딥 러닝 기반 웹 예측 시스템을 제안한다. 실험을 통해 논문에서 제안한 방법이 기존의 방법과 비교하여 성능 개선이 있다는 사실을 보였고 아울러 다음 페이지 예측의 정확성을 보였다.
본 연구는 웹 컨텐츠 통합 서비스에 관한 것으로 메타 브라우저, 중계 웹 서버, 포린 페이지 저작기, 포린 페이지 저장기로 구성한다. 메타 브라우저를 통해 사용자가 웹 사이트를 탐색하면서 웹 컨텐츠를 선택하며, 포린 페이지 저작기를 통해 각 사이트의 컨텐츠들로 포린페이지를 저작한다. 중계 웹 서버에서는 포린 페이지에 사용된 컨텐츠를 주기적으로 모니터링하여 컨텐츠 변화 감지시에 해당 컨텐츠로 구성된 포린페이지도 자동으로 갱신한다. 컨텐츠 추출을 위해 뭔 문서로 태그 트리를 구성하고, 그룹 시간 관계를 정의하여 포린 페이지 재생 모델을 제시했으며, 동기화를 위해 종료 제한 시간을 예측한다. 컨텐츠 변화 탐지 및 자동 갱신을 위해 컨텐츠 태그 트리와 웹 문서의 테그 트리간 차이값을 구하여 컨텐츠 변화 감지 방법을 제시한다.
웹 어플리케이션은 생명 주기가 짧고, 마르고 정확한 개발이 요구되므로 모델링 단계에서의 요소 분류 및 요소간의 제약조건을 정의할 필요가 있다. 이에 본 연구에서는 각 프레임과 페이지를 그 성격에 따라 집합 프레임과 구조 프레임, 내용 페이지와 구조 정보 페이지로 분류, 이를 바탕으로 요소간의 관계를 정의하였다. 웹 응용 모델링의 요소 분류를 통해 그에 따른 제약 조건을 서술할 수 있는데, 이를 통해 사소한 예측할 수 있는 오류를 피할 수 있고, 웹 응용의 기본적인 테스트 케이스로도 사용할 수 있다.
인터넷으로부터 필요한 정보를 얻기 위하여 무의미한 탐색을 반복하는 경우가 자주 나타나고 있다. 이러한 Dizzy Web에서 사용자와 관련 있는 정보를 추천해 주는 방법에 대한 연구가 많이 진행되고 있다. 특히 협동 추천시스템에 대한 연구가 활발히 진행되고 있다. 이 시스템의 구현 알고리즘 중에서 기존의 메모리 기반은 수행 시간에 대한 부담이 매우 크며, 모델 기반은 연속성 데이터에 대한 처리가 어렵거나 불가능하다는 문제가 있다. 본 논문에서는 특히 웹 사용자 모델에서 효과적인 연속성 피드백 데이터를 이용한 사용자 모델링 방법을 제안하고 이를 통해 웹 페이지 예측을 수행하는 시스템을 구현하였다. 논문에 사용된 연속성 데이터는 사용자의 웹 페이지 방문시간이고 이 데이터를 분석하기 위해 기존의 모델 기반 알고리즘에 Support Vector Regression 기법을 결합하는 알고리즘을 설계하였다. 실험에서는 제안 모델의 정확성과 예측 능력에 대하여 기존의 Pearson 알고리즘과 비교하였다. 논문에서 제안하는 방법이 매우 적은 시간 비용을 요구하면서도 유의할 수 있는 수준의 결과가 얻을 수 있음이 확인되었다.
본 연구는 수요예측 알고리즘으로 예측한 데이터와 실시간 데이터를 모니터링하기 위한 모니터링 애플리케이션과 웹 중 전력 수요관리 애플리케이션인 '해줌온', U&E 커뮤니케이션즈에서 사용하는 건설 현장 안전관리 시스템 웹 페이지를 비교하는 연구이다. 해당 연구는 위의 두 개의 대표적인 사례로 웹과 애플리케이션의 UI의 차이점, 장단점, 데이터의 보완 등을 비교하여 적절한 애플리케이션 또는 웹을 파악할 수 있다.
소프트웨어 시스템 개발의 초기 단계에서 시스템의 처리 시간이나 비용을 예측하는 것이 매우 중요하다는 것은 널리 알려진 사실이다. 많은 논문에 처리 시간을 예측하는 페트리넷 방법이 소개된 바 있다. 한편, 컴퓨터 과학 분야의 다른 영역에서는 응용 시스템 개발의 효율성을 증진시키는 방법으로 웹서비스가 깊이 있게 연구되고 있다. 이러한 두 가지 현상을 고려하여, 본 논문은 웹 서비스로 구성된 응용 소프트웨어 시스템의 처리시간을 분석하는 페트리넷 방법을 소개한다. 웹 응용 시스템의 처리시간을 어떤 상수로 표현하기는 대단히 어렵다. 따라서 본 논문은 대기행렬을 갖는 페트리넷으로 웹 응용 시스템을 표현할 것을 제안한다. 본 논문의 핵심은 이러한 대기행렬을 갖는 페트리넷의 분석 방법을 소개한 것이다.
웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.
흥미 있는 웹페이지의 자동화된 탐색은 다양한 응용 분야에 활용될 수 있다. 웹페이지에 대한 사용자의 흥미는 판단하는 것은 사용자의 행동을 관찰함으로 자동화가 가능하다. 흥미 있는 웹페이지를 구분하는 작업은 판별 문제에 속하며, 우리는 실증을 위해 화이트 박스의 학습 방법(로짓회귀분석, 지지기반학습)을 선택한다. 실험 결과는 다음을 나타내었다. (1) 고정효과 로짓회귀분석, polynomial 과 radial 커널을 이용한 고정효과 지지기반학습은 선형 커널보다 높은 성능을 보였다. (2) 개인화가 모델 성능을 향상시킴에 있어 주요한 이슈이다. (3) 사용자에게 웹페이지에 대항 흥미를 물을 때, 구간은 단순히 예/아니 도 충분할 수 있다. (4) 웹페이지에 머문 기간이 매초 증가할 때마다 성공확률은 1.004배 증가하며, 하지만 스크롤바 클릭 수 (p=0.56) 와 마우스 클릭 수 (p=0.36) 지표는 흥미와 통계적으로 유의한 관계를 가지지 않았다.
안드로이드 스마트폰 사용자에게 응답성은 중요한 성능 이슈이다. 스마트폰 응용 구동 시 응답성에 큰 영향을 미치는 것은 수많은 페이지 부재 처리기의 수행 시간이다. 선사상 기법은 페이지 부재 발생을 효과적으로 줄일 수 있는 기법이지만, 선사상할 페이지를 예측하기 어렵기 때문에 기존 안드로이드 스마트폰에서는 요구 사상 기법이 사용되고 있다. 본 논문은 응답성 향상을 위해 커널이 안드로이드 런타임과 라이브러리의 도움을 받아 선사상할 페이지를 예측하는 선사상 기법을 제안한다. 실험 결과 제안된 기법은 기존 시스템에 비해 웹 브라우저 응용의 응답 시간을 최대 3.25% 단축할 수 있었다.
웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.