기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.
웹의 방대한 데이터에서 사용자에게 유용한 정보를 제공하기 위하여 다양한 연구가 시도되고 있다. 웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 웹페이지를 평가할 수 있는 유용한 방법이다. 하지만 웹 사용 마이닝을 이용한 웹 페이지 평가에는 사용자들의 다양한 성향 패턴을 무시한 일괄적인 모델을 생성하는데 주를 이루고 있다. 본 논문은 사용자 관심 키워드에 대한 웹 페이지 사용 정보를 수집하고 분석하여 멀티 컨셉 네트워크(Multi Concept Network : MC-Net)를 생성한다. MC-Net은 사용자 관심 키워드에 기반한 다양한 성향 정보에 따른 웹 페이지 연결망을 제공한다. 생성된 MC-Net은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.
인터넷 웹 사이트 상에서 사용자 행동은 클릭(click)을 단위로 모두 로그 (log)에 기록된다. 웹 서버를 통해 남는 웹로그를 가공하여 단순한 통계 수치 외에, 사용자 행동을 분석할 수가 있다. 특히 인터넷 쇼핑몰에서 사용자의 행동에 대한 분석은 중요하며, 고객의 획득, 유지 전략을 수립하기 위한 중요한 정보가 된다. 본 논문에서는 인터넷 쇼핑몰에서의 사용자 행동을 비즈니스 관점에서 분석한다. 쇼핑몰 사이트의 유입 경로 분석의 다양한 관점에 대해 논의하며, 관심 카테고리 및 상품 분석, 첫페이지 영역별 분석 등 새로운 분석 방법에 대해 소개한다. 이와 함께, 이 분석과정에서 필요한 효율적인 데이터 구조, 운영계 데이터 베이스 정보 및 이들간의 연동방안과 분석 결과의 활용 방안을 제시한다.
웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 의미 있는 패턴을 추출하는 방법이다. 하지만 기존의 웹 사용 마이닝을 이용한 패턴 추출에는 사용자들의 다양한 성향을 고려하지 않은 개별적인 모델을 생성하는데 주를 이루고 있다. 웹에서 사용된 사용자들의 검색 키워드는 그들의 검색 의도나 배경지식에 따라 다양한 의미를 가질 수 있고, 그런 개개인의 검색의도에 맞는 검색 서비스가 제공할 수 있는 기술이 요구된다. 본 논문은 사용자 검색 키워드에 대한 웹 페이지 사용 행위 정보 및 방문한 웹 페이지 리스트를 수집하고 분석하여 웹 사용자의 패턴을 추출한다. 웹 사용자 패턴은 사용자들의 검색 키워드에 대해 가질 수 있는 다양한 검색 의도에 따른 방문 웹 페이지 연결망을 생성한다. 또한, 웹 사용자 패턴은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.
본 논문은 HTML과 CSS를 사용하여 기본적인 웹페이지를 작성하고, 카카오 지도 API를 활용하여 주변 스터디 룸 위치를 입력할 수 있는 기능을 구현한다. 카카오 개발자 웹사이트에서 API 키를 발급받아야 하며, 이를 사용하여 JavaScript 코드를 작성하고 웹페이지에 추가하여 지도와 위치 입력 기능을 구현한다. 또한, 회원가입 및 로그인 기능을 구현하기 위해 Node. JS를 사용하며, 사용자의 회원가입 정보를 입력받아 DB에 저장하고 로그인 시 DB와 비교하여 인증하는 기능을 포함합니다. MySQL을 사용하여 DB 테이블을 생성하고 연동하는 작업을 수행한다.
웹 사용 마이닝은 사용자의 웹 이용 패턴에 대해 분석하여 정보를 찾아내는 분야이다. 사용자에 대한 분석은 웹을 통한 비즈니스의 근간이 되고 있다. 때문에 웹 마이닝 분야에서 주목받고 중요시 되는 기술이 되었다. 그러나 최근에는 공개된 기술의 취약점을 이용해 악의적으로 정보를 교란하는 일이 발생되고 있어 사회적으로 이슈가 되고 있다. 이러한 문제는 특히 단순한 페이지 뷰 횟수에 기반을 둔 정보 추출 방식에 주로 발생하고 있다. 따라서 본 논문에서는 이러한 추출 방식의 단순함을 줄이고 사용자의 정보를 더 반영하기 위하여 페이지 이용 시간과 페이지 내의 행동을 분석하여 콘텐츠의 질을 평가하는 방안을 제시한다. 구현 부분에는 사용자의 개인정보 침해 없이 사용자의 행동을 수집하기 위하여 최근 인기를 얻고 있는 Ajax 기술을 사용하였다. 그리고 실시간으로 웹 페이지에 대한 평가를 수행하기 위해 서버에 로그 필터 모듈을 추가하는 수집 기법을 제안하였다.
인터넷 접속이 가능한 무선 단말기들의 보급이 크게 증가하면서 무선 인터넷 사용자의 수가 지속적으로 증가하고 있다. 그러나 대부분의 웹 컨텐츠와 서비스들은 데스크톱 환경에 최적화되어 무선 단말기를 통한 접근이 쉽지 않다. 이런 문제의 해결책으로 개인화를 통해 웹 컨텐츠 및 서비스를 무선 환경에 알맞게 재구성하는 방법은 웹 접근을 위한 새로운 대안으로 제시되고 있다. 본 논문에서 우리는 기존의 개인화 시스템과 달리 웹 서비스 페이지를 중점적으로 개인화하여 제공하는 기법을 제안한다. WebPer는 로그 데이터뿐만 아니라 웹 페이지 코드내 서비스 관련 특징의 평가를 통해 사용자가 자주 접속한 서비스 페이지들의 리스트를 제공한다. 사용자들은 서비스 리스트를 통해 무선 단말기의 각종 제약을 극복함과 동시에 개인화된 서비스를 제공받을 수 있다 우리는 제안된 기법을 기반으로 프로토타입 시스템을 구현하였으며, 다수의 서비스 페이지를 대상으로 무선 환경에서의 서비스 개인화 정도 및 전송 데이터의 효율을 측정하였다.
웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.
최근에 인터넷을 통한 의약품 정보가 범람하고 있다. 그러나 지금까지 일반인들이 웹페이지를 통하여 의약품 정보를 검색하는 패턴과 획득하는 방법에 대한 연구 결과가 미비한 실정이다. 따라서 이 논문에서는 의약품 정보를 제공하는 특정 회사의 웹 로그 파일을 WiseLog 툴을 사용하여 분석하였다. 특히 사용자 유형에 따른 웹페이지 사용 형태와 웹페이지 메뉴 사용 형태, 그리고 검색 메뉴 사용 형태의 3가지에 대한 웹 로그 파일 통계 결과 자료를 분석하였다. 그 결과 인터넷에서의 의약품 정보를 제공하는 회사들을 위한 보완 및 개선 방안들을 제시하였다.
데이터 마이닝(Data Mining)이란 저장된 많은 양의 자료로부터 통계적 수학적 분석방법을 이용하여 다양한 가치 있는 정보를 찾아내는 일련의 과정이다. 데이터 클러스터링은 이러한 데이터 마이닝을 위한 하나의 중요한 기법이다. 본 논문에서는 Fuzzy C-Means 알고리즘을 이용하여 웹 사용자들의 행위가 기록되어 있는 웹 로그 데이터를 데이터 클러스터링 하는 방법에 관하여 연구하고자 한다. Fuzzv C-Means 클러스터링 알고리즘은 각 데이터와 각 클러스터 중심과의 거리를 고려한 유사도 측정에 기초한 목적 함수의 최적화 방식을 사용한다. 웹 로그 데이터의 여러 필드 중에서 사용자 IP, 시간, 웹 페이지 필드를 WLDF(Web Log Data for FCM)으로 가공한 후, 다차원 Fuzzy C-Means 클러스터링을 한다. 그리고 이를 이용하여 샘플 데이터와 임의의 데이터간의 유사 패턴 분석을 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.