• 제목/요약/키워드: 웹 페이지 로그

검색결과 75건 처리시간 0.057초

사용자 군집을 이용한 개인화 된 웹 페이지 추천 (The personalized web page using the Users clustering method)

  • 이은경;이기현;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2002
  • 기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.

  • PDF

사용자 웹 사용 정보에 기반한 멀티 컨셉 네트워크의 생성 (Multi Concept Network based on User's Web Usage Data)

  • 윤광호;윤태복;이지형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.179-182
    • /
    • 2008
  • 웹의 방대한 데이터에서 사용자에게 유용한 정보를 제공하기 위하여 다양한 연구가 시도되고 있다. 웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 웹페이지를 평가할 수 있는 유용한 방법이다. 하지만 웹 사용 마이닝을 이용한 웹 페이지 평가에는 사용자들의 다양한 성향 패턴을 무시한 일괄적인 모델을 생성하는데 주를 이루고 있다. 본 논문은 사용자 관심 키워드에 대한 웹 페이지 사용 정보를 수집하고 분석하여 멀티 컨셉 네트워크(Multi Concept Network : MC-Net)를 생성한다. MC-Net은 사용자 관심 키워드에 기반한 다양한 성향 정보에 따른 웹 페이지 연결망을 제공한다. 생성된 MC-Net은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.

  • PDF

웹로그 마이닝을 통한 인터넷 쇼핑몰에서의 사용자 행동 분석

  • 이동하;김성민;오재훈;서동렬;임규건
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.305-312
    • /
    • 2004
  • 인터넷 웹 사이트 상에서 사용자 행동은 클릭(click)을 단위로 모두 로그 (log)에 기록된다. 웹 서버를 통해 남는 웹로그를 가공하여 단순한 통계 수치 외에, 사용자 행동을 분석할 수가 있다. 특히 인터넷 쇼핑몰에서 사용자의 행동에 대한 분석은 중요하며, 고객의 획득, 유지 전략을 수립하기 위한 중요한 정보가 된다. 본 논문에서는 인터넷 쇼핑몰에서의 사용자 행동을 비즈니스 관점에서 분석한다. 쇼핑몰 사이트의 유입 경로 분석의 다양한 관점에 대해 논의하며, 관심 카테고리 및 상품 분석, 첫페이지 영역별 분석 등 새로운 분석 방법에 대해 소개한다. 이와 함께, 이 분석과정에서 필요한 효율적인 데이터 구조, 운영계 데이터 베이스 정보 및 이들간의 연동방안과 분석 결과의 활용 방안을 제시한다.

  • PDF

사용자 웹 로그를 이용한 적응형 웹 검색 (Adaptive Web Search based on User Web Log)

  • 윤태복;이지형
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6856-6862
    • /
    • 2014
  • 웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 의미 있는 패턴을 추출하는 방법이다. 하지만 기존의 웹 사용 마이닝을 이용한 패턴 추출에는 사용자들의 다양한 성향을 고려하지 않은 개별적인 모델을 생성하는데 주를 이루고 있다. 웹에서 사용된 사용자들의 검색 키워드는 그들의 검색 의도나 배경지식에 따라 다양한 의미를 가질 수 있고, 그런 개개인의 검색의도에 맞는 검색 서비스가 제공할 수 있는 기술이 요구된다. 본 논문은 사용자 검색 키워드에 대한 웹 페이지 사용 행위 정보 및 방문한 웹 페이지 리스트를 수집하고 분석하여 웹 사용자의 패턴을 추출한다. 웹 사용자 패턴은 사용자들의 검색 키워드에 대해 가질 수 있는 다양한 검색 의도에 따른 방문 웹 페이지 연결망을 생성한다. 또한, 웹 사용자 패턴은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.

스터디 그룹 모집, 스터디 카페 위치 정보 서비스 웹페이지 (Study Group Recruitment, Study Cafe Location Information Service Web Page)

  • 김성진;조성우;박수민;서가인;김현아
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.249-250
    • /
    • 2023
  • 본 논문은 HTML과 CSS를 사용하여 기본적인 웹페이지를 작성하고, 카카오 지도 API를 활용하여 주변 스터디 룸 위치를 입력할 수 있는 기능을 구현한다. 카카오 개발자 웹사이트에서 API 키를 발급받아야 하며, 이를 사용하여 JavaScript 코드를 작성하고 웹페이지에 추가하여 지도와 위치 입력 기능을 구현한다. 또한, 회원가입 및 로그인 기능을 구현하기 위해 Node. JS를 사용하며, 사용자의 회원가입 정보를 입력받아 DB에 저장하고 로그인 시 DB와 비교하여 인증하는 기능을 포함합니다. MySQL을 사용하여 DB 테이블을 생성하고 연동하는 작업을 수행한다.

  • PDF

사용자 활동과 폐이지 이용 시간을 이용한 웹 페이지 평가 기법 (Evaluation of Web Pages using User's Activities in a Page and Page Visiting Duration Time)

  • 이동훈;윤태복;김건수;이지형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.99-102
    • /
    • 2007
  • 웹 사용 마이닝은 사용자의 웹 이용 패턴에 대해 분석하여 정보를 찾아내는 분야이다. 사용자에 대한 분석은 웹을 통한 비즈니스의 근간이 되고 있다. 때문에 웹 마이닝 분야에서 주목받고 중요시 되는 기술이 되었다. 그러나 최근에는 공개된 기술의 취약점을 이용해 악의적으로 정보를 교란하는 일이 발생되고 있어 사회적으로 이슈가 되고 있다. 이러한 문제는 특히 단순한 페이지 뷰 횟수에 기반을 둔 정보 추출 방식에 주로 발생하고 있다. 따라서 본 논문에서는 이러한 추출 방식의 단순함을 줄이고 사용자의 정보를 더 반영하기 위하여 페이지 이용 시간과 페이지 내의 행동을 분석하여 콘텐츠의 질을 평가하는 방안을 제시한다. 구현 부분에는 사용자의 개인정보 침해 없이 사용자의 행동을 수집하기 위하여 최근 인기를 얻고 있는 Ajax 기술을 사용하였다. 그리고 실시간으로 웹 페이지에 대한 평가를 수행하기 위해 서버에 로그 필터 모듈을 추가하는 수집 기법을 제안하였다.

  • PDF

모바일 사용자를 위한 웹 서비스 페이지 개인화 기법 (WebPer: Personalizing Web service pages for mobile users)

  • 전영효;황인준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (C)
    • /
    • pp.97-99
    • /
    • 2003
  • 인터넷 접속이 가능한 무선 단말기들의 보급이 크게 증가하면서 무선 인터넷 사용자의 수가 지속적으로 증가하고 있다. 그러나 대부분의 웹 컨텐츠와 서비스들은 데스크톱 환경에 최적화되어 무선 단말기를 통한 접근이 쉽지 않다. 이런 문제의 해결책으로 개인화를 통해 웹 컨텐츠 및 서비스를 무선 환경에 알맞게 재구성하는 방법은 웹 접근을 위한 새로운 대안으로 제시되고 있다. 본 논문에서 우리는 기존의 개인화 시스템과 달리 웹 서비스 페이지를 중점적으로 개인화하여 제공하는 기법을 제안한다. WebPer는 로그 데이터뿐만 아니라 웹 페이지 코드내 서비스 관련 특징의 평가를 통해 사용자가 자주 접속한 서비스 페이지들의 리스트를 제공한다. 사용자들은 서비스 리스트를 통해 무선 단말기의 각종 제약을 극복함과 동시에 개인화된 서비스를 제공받을 수 있다 우리는 제안된 기법을 기반으로 프로토타입 시스템을 구현하였으며, 다수의 서비스 페이지를 대상으로 무선 환경에서의 서비스 개인화 정도 및 전송 데이터의 효율을 측정하였다.

  • PDF

웹 로그 마이닝을 이용한 웹 문서 예측 시스템 (Web Document Prediction System by using Web Log Mining)

  • 이범석;황병연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.97-99
    • /
    • 2005
  • 웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.

  • PDF

웹로그 분석을 통한 의약품 정보 검색 주제별 이용 패턴에 관한 연구 (A Study on the Usage Patterns of Medicine Information Through Web Log Analysis)

  • 조경원;우영운
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 추계 종합학술대회 논문집
    • /
    • pp.269-274
    • /
    • 2005
  • 최근에 인터넷을 통한 의약품 정보가 범람하고 있다. 그러나 지금까지 일반인들이 웹페이지를 통하여 의약품 정보를 검색하는 패턴과 획득하는 방법에 대한 연구 결과가 미비한 실정이다. 따라서 이 논문에서는 의약품 정보를 제공하는 특정 회사의 웹 로그 파일을 WiseLog 툴을 사용하여 분석하였다. 특히 사용자 유형에 따른 웹페이지 사용 형태와 웹페이지 메뉴 사용 형태, 그리고 검색 메뉴 사용 형태의 3가지에 대한 웹 로그 파일 통계 결과 자료를 분석하였다. 그 결과 인터넷에서의 의약품 정보를 제공하는 회사들을 위한 보완 및 개선 방안들을 제시하였다.

  • PDF

다차원 FCM을 이용한 웹 로그 데이터의 유사 패턴 분석 (Similarity Pattern Analysis of Web Log Data using Multidimensional FCM)

  • 김미라;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.190-192
    • /
    • 2002
  • 데이터 마이닝(Data Mining)이란 저장된 많은 양의 자료로부터 통계적 수학적 분석방법을 이용하여 다양한 가치 있는 정보를 찾아내는 일련의 과정이다. 데이터 클러스터링은 이러한 데이터 마이닝을 위한 하나의 중요한 기법이다. 본 논문에서는 Fuzzy C-Means 알고리즘을 이용하여 웹 사용자들의 행위가 기록되어 있는 웹 로그 데이터를 데이터 클러스터링 하는 방법에 관하여 연구하고자 한다. Fuzzv C-Means 클러스터링 알고리즘은 각 데이터와 각 클러스터 중심과의 거리를 고려한 유사도 측정에 기초한 목적 함수의 최적화 방식을 사용한다. 웹 로그 데이터의 여러 필드 중에서 사용자 IP, 시간, 웹 페이지 필드를 WLDF(Web Log Data for FCM)으로 가공한 후, 다차원 Fuzzy C-Means 클러스터링을 한다. 그리고 이를 이용하여 샘플 데이터와 임의의 데이터간의 유사 패턴 분석을 하고자 한다.

  • PDF