Today, many services are supported on the web sites. Analysis of usage patterns of web site visitors is very important to optimize the use and efficiency of the web sites. In this study, analysis of usage patterns and comparative analysis of user groups were conducted by analyzing web access log provided by BPI Challenge 2016. This data provides access logs to the web site in the IT system of a Dutch Employee Insurance Agency (UWV). The customer information, and the click data describing the customers' behavior when using the agency's web site. In this study, we use process mining techniques to analyze the usage patterns of customers and the characteristics of customer groups, and ultimately improve the service quality of customers using web services.
Proceedings of the Korean Information Science Society Conference
/
2002.10e
/
pp.130-132
/
2002
기존의 여러 동적 추천 시스템에서는 웹 페이지들 사이의 유사도와 로그 파일 안에들어 있는 사용자들의 패턴을 이용하였기 때문에 연관된 페이지 뿐 아니라 단순히 순차적으로 연결되는 문서를 추천 페이지로 제공할 수 있었다. 본 논문에서는 기존의 방식에 각 페이지가 점유하는 시간의 분석을 더하려 한다. Data를 여러 분야로 나눌 수 있는 전자상거래의 특성을 이용하여 개개의 클러스터로 분류된 사이트들의 로그파일을 분석하여 점유시간의 크기와 무의미하게 보내어 지는 시간을 가중치를 주어 구별해내는 결과를 바탕으로 사용자가 주로 방문하는 연관성이 높다고 판단되는 웹 페이지를 추천하는 방법을 제안한다.
웹 서버에서 로그파일은 웹 서버에 대한 접속정보를 저장한다. 이 정보를 분석하면 웹 서비스를 하는데 있어서 서비스의 질을 높이는데 좋은 참고자료가 될 뿐 아니라 웹 서버에 이상이 생겼을 경우 발생한 오류를 조기에 발견하는 데에도 사용되는 중요한 자료이다. 현재 이러한 로그파일은 텍스트 파일로 저장이 되어있으며 오랜 시간이 지나 그 웹 페이지가 삭제되었을 경우 로그파일에 기록된 그 시각의 웹 페이지를 찾아보기가 어렵다. 본 연구에서는 로그파일에 기록된 그 시각의 웹 페이지의 이미지를 저장하는 방법으로 이러한 단점을 보안하고 오랜 시간이 지난 후에도 그 웹 페이지를 볼 수 있는 방법을 제안한다. 이 아이디어가 구현되어 실현되면 또한 Digital Forensic 으로써 범죄 수사에도 많은 도움이 될뿐만 아니라 휴대전화로 풀 인터넷 브라우징이 가능한 풀브라우저에도 적용될 수 있다.
Web usage mining is the technique of data mining that analyzes web users' usage patterns by large web log. To use the web usage mining technique, we have to classify correctly users and users session in preprocessing, but can't classify them completely by only log files with standard web log format. To classify users and user session there are many problems like local cache, firewall, ISP, user privacy, cookey etc., but there isn't any definite method to solve the problems now. Especially local cache problem is the most difficult problem to classify user session which is used as input in web mining systems. In this paper we propose a heuristic method which solves local cache problem by using only click stream data of server side like referrer log, agent log and access log, classifies user sessions and completes session.
본 논문은 웹 서버에 저장되어 있는 로그관리 시스템을 이용하여 방문자들의 방문 기록을 관리하는 로그관리 시스템을 구현하였는데 첫째, 사용자 로그인 표시에 사용자 정보와 패스워드를 입력하고 서버에 접속하여 사용자를 확인하는 절차를 적용하였다. 둘째, 개인 정보보호 같은 취약점을 보완하기 위하여 클라이언트의 웹 브라우저에 포함된 로그관리시스템을 사용함으로써 서버와 안전한 사용자 로그인을 위한 채널을 생성하도록 하였다. 셋째, 사이트 접속 에러 분석시 웹사이트 관리할 때 방문자들이 불편함을 느끼지 않고 사이트에서 필요한 정보를 빠르고 쉽게 찾을 수 있도록 제공해 주고 허가된 비인가자의 접근 체크 기능을 부여하였다.
협동적 추천은 사용자의 상품에 대한 구매 데이터를 이용하여 상품을 추천하는 방법이다. 그러나 구매 데이터가 희소한 경우 추천의 정확도가 떨어지는 문제점이 있다. 이러한 희소성 문제를 해결하기 위해서 클러스터링, SVD 등 다양한 방법이 제시되었으나, 근본적으로 사용자의 성향을 파악하기에는 부족한 점이 있다. 구매 데이터만을 이용했을 때의 문제점을 해결하기 위해서는 이를 보완할 수 있는 데이터의 활용이 필요하다. 웹 로그 분석을 통해서 구매 데이터의 희소성을 보완할 수 있으며, 사용자의 상품에 대한 부정적 반응을 구매 데이터에 반영할 수 있다. 본 논문에서는 웹 사이트에 접근하는 사용자들에 의해서 만들어진 웹 로그를 분석하여 추천 시스템의 성능을 개선하였다.
전자상거래에서 쇼핑몰의 개인화된 서비스를 제공하기 위해서는 소비자의 구매 패턴을 분석하는 것이 필요하다. 이러한 패턴을 효과적으로 분석하기 위해 웹사이트 상에서 사용자 행동 패턴 정보를 수집해야 한다. 본 논문에서는 사용자 패턴 수집 시스템으로 쇼핑몰 서버에 기능을 추가하고 지능형 웹로그 서버를 정의하며 이를 설계, 구현하였다. 전자상거래 쇼핑몰 서버에는 사용자 행위 정보를 로그에 포함시켜 지능형 웹로그 서버에 전송하는 기능을 추가하였다. 그리고 지능형 웹로그 서버는 쇼핑몰 서버로부터 받은 로그 데이터를 분석하고 데이터베이스화하여 저장한다. 이때 데이터베이스 저장 기술로 OLE DB Provider상에서 수행되는 ADO기술을 사용한다. 그리고 저장된 데이터베이스를 레코드셋 단위로 원격에서 제어 가능하게 한다. 또 생성된 데이터베이스에서 필요한 데이터를 선별하여 XML DB로 저장한다. 이와 같은 사용자 패턴 수집 시스템은 데이터베이스 접근 속도가 빠르고, 관계형이나 비관계형 둘 다의 데이터베이스 접근이 가능하다는 장정을 가지며, 원격 데이터 베이스 접근 시 서버의 부하를 줄일 수 있다는 장점이 있다.
Nowadays, IT for CRM has been growing and developed rapidly. Typical techniques are statistical analysis tools, on-line multidimensional analytical processing (OLAP) tools, and data mining algorithms (such neural networks, decision trees, and association rules). Among customer data, web log data is very important and to use these data efficiently, applying OLAP technology to analyze multi-dimensionally. To make OLAP cube, we have to precalculate multidimensional summary results in order to get fast response. But as the number of dimensions and sparse cells increases, data explosion occurs seriously and the performance of OLAP decreases. In this paper, we presented why the web log data sparsity occurs and then what kinds of sparsity patterns generate in the two and t.he three dimensions for OLAP. Based on this research, we set up the multidimensional data models and query models for benchmark with each sparsity patterns. Finally, we evaluated the performance of three OLAP systems (MS SQL 2000 Analysis Service, Oracle Express and C-MOLAP).
Journal of the Korean Society for information Management
/
v.27
no.4
/
pp.109-130
/
2010
The purpose of this study is to identify th patterns in the news reporters' information seeking behaviors by observing their web activities. For this purpose, transaction logs collected from 23 news reporters were analyzed. Web tracking software was installed to collect the data from their PCs, and a total of 39,860 web logs were collected in two weeks. Start and end pattern of sessions, transitional pattern by step, sequence rule model was analyzed and the pattern of Internet use was compared with the general public. the analysis of pattern derived a web information seeking behavior modes that consists of four types of behaviors: fact-checking browsing, fact-checking search, investigative browsing and investigative search.
The Journal of Korean Association of Computer Education
/
v.6
no.2
/
pp.107-120
/
2003
In Web Based Instruction, as evaluation of learning process means individual student's learning activity, it demands data on learning time, pattern, participation, environment in a specific learning contents. The purpose of this paper is to reflect analysis results of individual student's learning status in achievement evaluation using the most suitable web log mining to settle evaluation problem of learning process, an issue in web based instruction. The contents and results of this study are as following. First, conformity item for learning status analysis is determined and web log data preprocessing is executed. Second, on the basis of web log data, I construct student's database and analyze learning status using data mining techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.