• Title/Summary/Keyword: 웹 이용 로그 분석

Search Result 165, Processing Time 0.027 seconds

A Study on the Content Utilization of KISTI Science and Technology Information Service (KISTI 과학기술정보서비스의 콘텐츠 활용 분석)

  • Kang, Nam-Gyu;Hwang, Mi-Nyeong
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.87-95
    • /
    • 2020
  • The Science and Technology Information Service provided by the Korea Institute of Science and Technology Information (KISTI) is a service designed to allow users to easily and conveniently search and view content that is built similar to the general information service. NDSL is KISTI's core science, technology and information service, providing about 138 million content and having about 93 million page views in a year of 2019. In this paper, various insights were derived through the analysis of how science and technology information such as academic papers, reports and patents provided by NDSL is searched and utilized through web services (https://www.ndsl.kr) and search query words. In addition to general statistics such as the status of content construction, utilization status and utilization methods by type of content, monthly/weekly/time-of-day content usage, content view rate per one-time search by content type, the comparison of the use status of academic papers by year, the relationship between the utilization of domestic academic papers and the KCI index we analyzed the usability of each content type, such as academic papers and patents. We analyzed query words such as the language form of query words, the number of words of query words, and the relationship between query words and timeliness by content type. Based on the results of these analyses, we would like to propose ways to improve the service. We suggest that NDSL improvements include ways to dynamically reflect the results of content utilization behavior in the search results rankings, to extend query and to establish profile information through non-login user identification for targeted services.

Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal (방사성폐기물 처분안전성 평가 자료 제공을 위한 핵종 수착 데이터베이스(KAERI-SDB) 개발)

  • Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the use of sorption database is often limited due to the accessability. A web-based sorption database program named KAERI-SDB has been developed to provide information on the sorption of radionuclides onto geological media as a function of geochemical conditions. The development of KAERI-SDB was achieved by improving the performance of pre-existing sorption database program (SDB-21C) developed in 1998 and considering user's requirements. KAERI-SDB is designed that users can access it by using a web browser. Main functions of KAERI-SDB include (1) log-in/member join, (2) search and store of sorption data, and (3) chart expression of search results. It is expected that KAERI-SDB could be widely utilized in the safety assessment of radioactive waste disposal by enhancing the accessibility to users who wants to use sorption data. Moreover, KAERI-SDB opened to public would also improve the reliability and public acceptance on the radioactive waste disposal programs.

An Integrated Data Mining Model for Customer Relationship Management (고객관계관리를 위한 통합 데이터마이닝 모형 연구)

  • Song, In-Young;Yi, Tae-Seok;Shin, Ki-Jeong;Kim, Kyung-Chang
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.83-99
    • /
    • 2007
  • Nowadays, the advancement of digital information technology resulting in the increased interest of the management and the use of information has given stimulus to the research on the use and management of information. In this paper, we propose an integrated data mining model that can provide the necessary information and interface to users of scientific information portal service according to their respective classification groups. The integrated model classifies users from log files automatically collected by the web server based on users' behavioral patterns. By classifying the existing users of the web site, which provides information service, and analyzing their patterns, we proposed a web site utilization methodology that provides dynamic interface and user oriented site operating policy. In addition, we believe that our research can provide continuous web site user support, as well as provide information service according to user classification groups.

  • PDF

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.