• Title/Summary/Keyword: 웹페이지

Search Result 1,044, Processing Time 0.02 seconds

Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System (법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론)

  • Kim, Ji Hyun;Lee, Jong-Seo;Lee, Myungjin;Kim, Wooju;Hong, June Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.137-152
    • /
    • 2012
  • In the generation of Web 2.0, as many users start to make lots of web contents called user created contents by themselves, the World Wide Web is overflowing by countless information. Therefore, it becomes the key to find out meaningful information among lots of resources. Nowadays, the information retrieval is the most important thing throughout the whole field and several types of search services are developed and widely used in various fields to retrieve information that user really wants. Especially, the legal information search is one of the indispensable services in order to provide people with their convenience through searching the law necessary to their present situation as a channel getting knowledge about it. The Office of Legislation in Korea provides the Korean Law Information portal service to search the law information such as legislation, administrative rule, and judicial precedent from 2009, so people can conveniently find information related to the law. However, this service has limitation because the recent technology for search engine basically returns documents depending on whether the query is included in it or not as a search result. Therefore, it is really difficult to retrieve information related the law for general users who are not familiar with legal terms in the search engine using simple matching of keywords in spite of those kinds of efforts of the Office of Legislation in Korea, because there is a huge divergence between everyday words and legal terms which are especially from Chinese words. Generally, people try to access the law information using everyday words, so they have a difficulty to get the result that they exactly want. In this paper, we propose a term mapping methodology between everyday words and legal terms for general users who don't have sufficient background about legal terms, and we develop a search service that can provide the search results of law information from everyday words. This will be able to search the law information accurately without the knowledge of legal terminology. In other words, our research goal is to make a law information search system that general users are able to retrieval the law information with everyday words. First, this paper takes advantage of tags of internet blogs using the concept for collective intelligence to find out the term mapping relationship between everyday words and legal terms. In order to achieve our goal, we collect tags related to an everyday word from web blog posts. Generally, people add a non-hierarchical keyword or term like a synonym, especially called tag, in order to describe, classify, and manage their posts when they make any post in the internet blog. Second, the collected tags are clustered through the cluster analysis method, K-means. Then, we find a mapping relationship between an everyday word and a legal term using our estimation measure to select the fittest one that can match with an everyday word. Selected legal terms are given the definite relationship, and the relations between everyday words and legal terms are described using SKOS that is an ontology to describe the knowledge related to thesauri, classification schemes, taxonomies, and subject-heading. Thus, based on proposed mapping and searching methodologies, our legal information search system finds out a legal term mapped with user query and retrieves law information using a matched legal term, if users try to retrieve law information using an everyday word. Therefore, from our research, users can get exact results even if they do not have the knowledge related to legal terms. As a result of our research, we expect that general users who don't have professional legal background can conveniently and efficiently retrieve the legal information using everyday words.

Finding Influential Users in the SNS Using Interaction Concept : Focusing on the Blogosphere with Continuous Referencing Relationships (상호작용성에 의한 SNS 영향유저 선정에 관한 연구 : 연속적인 참조관계가 있는 블로고스피어를 중심으로)

  • Park, Hyunjung;Rho, Sangkyu
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.4
    • /
    • pp.69-93
    • /
    • 2012
  • Various influence-related relationships in Social Network Services (SNS) among users, posts, and user-and-post, can be expressed using links. The current research evaluates the influence of specific users or posts by analyzing the link structure of relevant social network graphs to identify influential users. We applied the concept of mutual interactions proposed for ranking semantic web resources, rather than the voting notion of Page Rank or HITS, to blogosphere, one of the early SNS. Through many experiments with network models, where the performance and validity of each alternative approach can be analyzed, we showed the applicability and strengths of our approach. The weight tuning processes for the links of these network models enabled us to control the experiment errors form the link weight differences and compare the implementation easiness of alternatives. An additional example of how to enter the content scores of commercial or spam posts into the graph-based method is suggested on a small network model as well. This research, as a starting point of the study on identifying influential users in SNS, is distinctive from the previous researches in the following points. First, various influence-related properties that are deemed important but are disregarded, such as scraping, commenting, subscribing to RSS feeds, and trusting friends, can be considered simultaneously. Second, the framework reflects the general phenomenon where objects interacting with more influential objects increase their influence. Third, regarding the extent to which a bloggers causes other bloggers to act after him or her as the most important factor of influence, we treated sequential referencing relationships with a viewpoint from that of PageRank or HITS (Hypertext Induced Topic Selection).

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.