The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.6
/
pp.609-616
/
2017
In this paper, we propose an algorithm to obtain more stable and high recognition rate by using left and right rotation information of input image in order to obtain a stable recognition rate in face recognition. The proposed algorithm uses the facial image as the input information in the web camera environment to reduce the size of the image and normalize the information about the brightness and color to obtain the improved recognition rate. We apply Principal Component Analysis (PCA) to the detected candidate regions to obtain feature vectors and classify faces. Also, In order to reduce the error rate range of the recognition rate, a set of data with the left and right $45^{\circ}$ rotation information is constructed considering the directionality of the input face image, and each feature vector is obtained with PCA. In order to obtain a stable recognition rate with the obtained feature vector, it is after scattered in the eigenspace and the final face is recognized by comparing euclidean distant distances to each feature. The PCA-based feature vector is low-dimensional data, but there is no problem in expressing the face, and the recognition speed can be fast because of the small amount of calculation. The method proposed in this paper can improve the safety and accuracy of recognition and recognition rate faster than other algorithms, and can be used for real-time recognition system.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.5
/
pp.493-506
/
2018
This paper proposes the OOPP(Optimized Online Portfolio Platform) design for the job seekers to search for the job competency necessary for employment and to write and manage portfolio online efficiently. The OOPP consists of three modules. First, JDCM(Job Data Collection Module) stores the help-wanted advertisements of job information sites in a spreadsheet. Second, CSM(Competency Statistical Model) classifies core competencies for each job by text-mining the collected help-wanted ads. Third, OBBM(Optimize Browser Behavior Module) makes users to look up data rapidly by improving the processing speed of a browser. In addition, The OBBM consists of the PSES(Parallel Search Engine Sub-Module) optimizing the computation of a Search Engine and the OILS(Optimized Image Loading Sub-Module) optimizing the loading of image text, etc. The performance analysis of the CSM shows that there is little difference in accuracy between the CSM and the actual advertisement because its data accuracy is 99.4~100%. If Browser optimization is done by using the OBBM, working time is reduced by about 68.37%. Therefore, the OOPP makes users look up the analyzed result in the web page rapidly by analyzing the help-wanted ads. of job information sites accurately.
The development of reliable and objective definitions as well as automated processes for the detection of health care-associated infections (HAIs) is crucial; however, transformation to an automated surveillance system remains a challenge. Early outbreak identification usually requires clinicians who can recognize abnormal events as well as ongoing disease surveillance to determine the baseline rate of cases. The system screens the laboratory information system (LIS) data daily to detect candidates for health care-associated bloodstream infection (HABSI) according to well-defined detection rules. The system detects and reserves professional autonomy by requiring further confirmation. In addition, web-based HABSI surveillance and classification systems use discrete data elements obtained from the LIS, and the LIS-provided data correlates strongly with the conventional infection-control personnel surveillance system. The system was timely, acceptable, useful, and sensitive according to the prevention guidelines. The surveillance system is useful because it can help health care professionals better understand when and where the transmission of a wide range of potential pathogens may be occurring in a hospital. A national plan is needed to strengthen the main structures in HAI prevention, Healthcare Associated Prevention and Control Committee (HAIPCC), sterilization service (SS), microbiology laboratories, and hand hygiene resources, considering their impact on HAI prevention.
Over the past decade, the development of the Web explosively increased the data. Feature selection step is an important step in extracting valuable data from a large amount of data. This study proposes a novel opinion mining model based on combining feature selection (FS) methods with Word embedding to vector (Word2vec) and BOW (Bag-of-words). FS methods adopted for this study are CFS (Correlation based FS) and IG (Information Gain). To select an optimal FS method, a number of classifiers ranging from LR (logistic regression), NN (neural network), NBN (naive Bayesian network) to RF (random forest), RS (random subspace), ST (stacking). Empirical results with electronics and kitchen datasets showed that LR and ST classifiers combined with IG applied to BOW features yield best performance in opinion mining. Results with laptop and restaurant datasets revealed that the RF classifier using IG applied to Word2vec features represents best performance in opinion mining.
The "About Us" page on the website of a corporation provides information regarding the organization's vision, philosophy, and values. We examine the association between institutional information provided on corporate websites (i.e., the "About Us" section) with present and future financial performance. Utilizing a text mining technique, we analyze the institutional information of S&P500 firms in the year 2016. We conduct a factor analysis including words that are intentionally repeated in the introductory text of corporate websites. The results of the analysis reveal that keywords from this institutional information can be grouped into six factors. We then carry out an ordinary least squares regression analysis to determine the associations between these six factors and present financial performance. The results show that keywords in Factor 2 (those related to Purchasing experience) are positively associated with ROE, a variable representing present financial performance, while keywords in Factor 1 (those related to Note to customers) show a negative relationship with ROE. On the other hand, keywords in Factor 1 have a positive relationship with Tobin's Q, a variable representing future financial performance. These results indicate that there is some relationship between the words used in the institutional information in this section of corporate websites and firms' financial performance. Hence, the institutional information on a website may be a useful indicator of current firm performance and future firm value.
Kim, Jong-hee;Lee, Eun-seok;Kim, Jeong-su;Park, Jong-kook;Kim, Jong-bae
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.309-311
/
2014
Despite increasing demands for big data application based on the analysis of scattered unstructured data, few relevant studies have been reported. Accordingly, the present study suggests a technique enabling a sentence-based semantic analysis by extracting objects from collected web information and automatically analyzing the relationships between such objects with collective intelligence and language processing technology. To be specific, collected information is stored in DBMS in a structured form, and then morpheme and feature information is analyzed. Obtained morphemes are classified into objects of interest, marginal objects and objects of non-interest. Then, with an inter-object attribute recognition technique, the relationships between objects are analyzed in terms of the degree, scope and nature of such relationships. As a result, the analysis of relevance between the information was based on certain keywords and used an inter-object relationship extraction technique that can determine positivity and negativity. Also, the present study suggested a method to design a system fit for real-time large-capacity processing and applicable to high value-added services.
In Asia, when cotton and cotton fabrics cultivated and produced in India of Southern Asia had spread to the whole Asia area by land and by sea, the Cotton Road and cotton fabric cultural area could be formed. In Korea, the traditional cotton (Gossypium arboreum) brought by Moon Ik-Jeom in 1363 was cultivated and then the Upland cotton (Gossypium hirsutum) brought via Japan could be produced from 1904. Especially, Gwangju/Jeonnam was the most active place in producing traditional cotton, and eventually became the center of cotton cultivation and fabric production after bringing in Upland cotton. In order to collect and record the cotton cultural resources in the broad area, the Cultural Resources Set, classified its component parts should be made first and then the collecting objects should be investigated. The collecting areas are selected based on the spreading paths and the regional significance of cotton. Since its difficulty of collecting the relevant resources from all of the places in Asia, it should be planned to share the resources through exchanges and cooperation among private, institution and organization. The relevant experts from the various fields should participate in the interdisciplinary researches which are necessary for collecting and recording of wide area cultural resources. Considering the collecting limitation of genuine relics, the digital archives should be established and then offered through a web site that everyone can use them freely by remote. It also needs to plan to display on and off-line for users to perceive the similarity, difference and interconnections of the resources with ease.
Journal of the Korea Institute of Building Construction
/
v.22
no.3
/
pp.281-291
/
2022
This study attempts to use big data to determine the indicators necessary for a fire risk assessment of buildings. Because most of the causes affecting the fire risk of buildings are fixed as indicators considering only the building itself, previously only limited and subjective assessment has been performed. Therefore, if various internal and external indicators can be considered using big data, effective measures can be taken to reduce the fire risk of buildings. To collect the data necessary to determine indicators, a query language was first selected, and professional literature was collected in the form of unstructured data using a web crawling technique. To collect the words in the literature, pre-processing was performed such as user dictionary registration, duplicate literature, and stopwords. Then, through a review of previous research, words were classified into four components, and representative keywords related to risk were selected from each component. Risk-related indicators were collected through analysis of related words of representative keywords. By examining the indicators according to their selection criteria, 20 indicators could be determined. This research methodology indicates the applicability of big data analysis for establishing measures to reduce fire risk in buildings, and the determined risk indicators can be used as reference materials for assessment.
Lee, Changsup;Lee, Woo Kyoung;Division of Solar and Space Environment of KSSS,
Journal of Space Technology and Applications
/
v.1
no.2
/
pp.199-216
/
2021
In 2020, the solar and space environment division at the Korea Space Science Society surveyed the status of data archives in solar physics, magnetosphere, and ionosphere/upper atmosphere in Korea to promote broader utilization of the data and research collaboration. The survey includes ground- and satellite-based instruments and developing models by research institutes and universities in Korea. Based on the survey results, this study reports the status of the ground-based instruments, data products in the ionosphere and upper atmosphere, and documentation of them. The ground-based instruments operated by the Korea Polar Research Institute and Korea Astronomy and Space Science Institute include ionosonde, Fabry-Perot interferometer in Arctic Dasan stations, Antarctic King Sejong/Jang Bogo stations, and an all-sky camera, VHF radar in Korea. We also provide information on total electron content and scintillation observations derived from the Global Navigation Satellite System (GNSS) station networks in Korea. All data are available via the webpage, FTP, or by request. Information on ionospheric data and models is available at http://ksss.or.kr. We hope that this report will increase data accessibility and encourage the research community to engage in the establishment of a new Space Science Data Ecosystem, which supports archiving, searching, analyzing, and sharing the data with diverse communities, including educators, industries, and the public as wells as the research scientist.
Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.