• 제목/요약/키워드: 웹문서

검색결과 1,602건 처리시간 0.019초

텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법 (An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology)

  • 최석재;전종식;비스워스 수브르더;권오병
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.113-129
    • /
    • 2015
  • 장소 브랜딩은 특정 장소에 대한 의미 부여를 통해 장소성의 정체성 및 공동가치를 생성하며 가치 창출을 하는데 중요한 활동이며, 장소 브랜드에 대한 이미지 파악을 통해 이루어진다. 이에 마케팅, 건축학, 도시건설학 등 여러 분야에서는 인상적인 장소 브랜드의 이미지를 구축하기 위하여 많은 노력을 기울이고 있다. 하지만 설문조사를 포함한 대면조사 방법은 대부분 주관적인 작업이며 측정에 많은 인력 또는 고도의 전문 인력이 소요되어 고비용을 발생시키므로 보다 객관적이면서도 비용효과적인 브랜드 이미지 조사 방법이 필요하다. 이에 본 논문은 텍스트마이닝을 통하여 장소 브랜드의 이미지 강도를 객관적이고 저비용으로 얻는 방법을 찾는 것을 목적으로 한다. 제안하는 방법은 장소 브랜드 이미지를 구성하고 있는 요인과 그 키워드들을 관련 웹문서에서 추출하며, 추출된 정보를 통해 특정 장소의 브랜드 이미지 강도를 측정하는 방법이다. 성능은 안홀트 방법에서 평가에 사용하는 전세계 50개 도시 이미지 인덱스 순위와의 일치도로 검증하였다. 성능 비교를 위해 임의로 순위를 매기는 방법, 안홀트의 설문방식대로 일반인이 평가하는 방법, 본 논문의 방법을 사용하되 안홀트의 방법으로 학습한 것으로 유의한 것으로 추정되는 평가 항목만을 반영하는 방법과 비교하였다. 그 결과 제안된 방법론은 정확성, 비용효율성, 적시성, 확장성, 그리고 신뢰성 측면에서 우수함을 보일 수 있었다. 따라서 본 연구에서 제안한 방법론은 안홀트 방식에 상호 보완적으로 사용될 수 있을 것이다. 향후에는 장소 브랜드 이미지를 형성하는 속성 별로 등장횟수를 계산 한 후에 장소 브랜드에 대한 태도, 연상, 그리고 브랜드 자산과의 인과관계를 자동으로 파악할 수 있는 부분까지 구현하고 실증적 실험을 할 예정이다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.