• Title/Summary/Keyword: 웨이블릿 부대역의 에너지

Search Result 17, Processing Time 0.019 seconds

Noise Reduction Algorithm by using Multiple filtering (다중 필터링 방법을 이용한 영상의 노이즈 제거 알고리즘)

  • Kim, Jin-Kyum;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.236-237
    • /
    • 2019
  • In this paper, we propose a wavelet - based image noise reduction algorithm. We develop wavelet transform of existing Mallat Tree method. First, we propose a multiple filtering method. Maximizes the energy concentration characteristic of the wavelet transform considering the energy of each subband in the wavelet domain. We apply the proposed multiple filtering to the noise image. Finds energy subbands that can not be seen in normal images and removes them to remove noise.

  • PDF

Smoke Detection Using the Ratio of Variation Rate of Subband Energy in Wavelet Transform Domain (웨이블릿 변환 영역에서 부대역 에너지 변화율의 비를 이용한 연기 감지)

  • Kim, JungHan;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.287-293
    • /
    • 2014
  • Early fire detection is very important to avoid loss of lives and material damage. The conventional smoke detector sensors have difficulties in detecting smoke in large outdoor areas. The video-based smoke detection can overcome these drawbacks. This paper proposes a new smoke detection method in video sequences. It uses the ratio of variation rate of subband energy in the wavelet transform domain. In order to reduce the false alarm, candidate smoke blocks are detected by using motion, decrease of chromaticity and the average intensity of block in the YUV color space. Finally, it decides whether the candidate smoke blocks are smokes or not by using their temporal changes of subband energies in the wavelet transform domain. Experimental results show that the proposed method noticeably increases the accuracy of smoke detection and reduces false alarm compared with the conventional smoke detection methods using wavelets.

Efficient Encryption Technique of Image using Packetized Discrete Wavelet Transform (패킷화 이산 웨이블릿 변환을 이용한 영상의 효율적인 암호화 기법)

  • Seo, Youngho;Choi, Eui-Sun;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.603-611
    • /
    • 2013
  • In this paper, we propose a new method which estimates and encrypts significant component of digital image such as digital cinema using discrete wavelet packet transform (DWPT). After analyzing the characteristics of images in spatial and frequency domain, the required information for ciphering an image was extracted. Based on this information an ciphering method was proposed with wavelet transform and packetization of subbands. The proposed algorithm can encrypt images in various robust from selecting transform-level and energy threshold. From analyzing the encryption effect numerically and visually, the optimized parameter for encryption is presented. Without additional analyzing process, one can encrypt efficiently digital image using the proposed parameter. Although only 0.18% among total data is encrypted, the reconstructed image dose not identified. The paketization information of subbands and the cipher key can be used for the entire secret key.

Digital Watermarking Technique in Wavelet Domain for Protecting Copyright of Contents (컨텐츠의 저작권 보호를 위한 DWT영역에서의 디지털 워터마킹 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1409-1415
    • /
    • 2010
  • In this paper we proposed the watermarking technique using the markspace which is selected by tree-structure between the subbands in the wavelet domain and feature information in the spatial domain. The watermarking candidate region in the wavelet domain is obtained by the markspace selection algorithm divides the highest frequency subband to several segments and calculates theirs energy and the averages value of the total energy of the subband. Also the markspace of the spatial domain is obtained by the boundary information of a image. The final markspace is selected by the markspaces of the wavelet and spatial domain. The watermark is embedded into the selected markspace using the random addresses by LFSR. Finally the watermarking image is generated using the inverse wavelet transform. The proposed watermarking algorithm shows the robustness against the attacks such as JPEG, blurring, sharpening, and gaussian noise.

Hybrid Watermarking Technique using DWT Subband Structure and Spatial Edge Information (DWT 부대역구조와 공간 윤곽선정보를 이용한 하이브리드 워터마킹 기술)

  • 서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.706-715
    • /
    • 2004
  • In this paper, to decide the watermark embedding positions and embed the watermark we use the subband tee structure which is presented in the wavelet domain and the edge information in the spatial domain. The significant frequency region is estimated by the subband searching from the higher frequency subband to the lower frequency subband. LH1 subband which has the higher frequency in tree structure of the wavelet domain is divided into 4${\times}$4 submatrices, and the threshold which is used in the watermark embedding is obtained by the blockmatrix which is consists by the average of 4${\times}$4 submatrices. Also the watermark embedding position, Keymap is generated by the blockmatrix for the energy distribution in the frequency domain and the edge information in the spatial domain. The watermark is embedded into the wavelet coefficients using the Keymap and the random sequence generated by LFSR(Linear feedback shift register). Finally after the inverse wavelet transform the watermark embedded image is obtained. the proposed watermarking algorithm showed PSNR over 2㏈ and had the higher results from 2% to 8% in the comparison with the previous research for the attack such as the JPEG compression and the general image processing just like blurring, sharpening and gaussian noise.

Semi-Fragile Image Watermarking for Authentication Using Wavelet Packet Transform Based on The Subband Energy (부대역 에너지 기반 웨이블릿 패킷 변환을 이용한 인증을 위한 세미 프레자일 영상 워터마킹)

  • Park, Sang-Ju;Kwon, Tae-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.421-428
    • /
    • 2005
  • A new method of Semi-fragile image watermarking which ensures the integrity of the contents of digital image is presented. Proposed watermarking scheme embeds watermark in the form of quantization noise on the wavelet transform coefficients in a specific mid frequency subbands selected from a wavelet packet decomposition based on energy distribution of wavelet transform coefficients. By controlling the strength of embedded watermark using HVS (Human Visual System) characteristic, it is imperceptible by a human viewer while robust against non-malicious attack such as compression for storage and/or transmission. When an attack is applied on the original image, it is highly probable that wavelet transform coefficients not only at the exact attack positions but also the neighboring ones are modified. Therefore, proposed authentication method utilizes whether both current coefficient and its neighbors are damaged. together. So it can efficiently detect and accurately localize attacks inflicted on the content of original image. Decision threshold for authentication can be user controlled for different application areas as needed.

Digital Hologram Encryption using Discrete Wavelet Packet Transform (이산 웨이블릿 패킷 변환을 이용한 디지털 홀로그램의 암호화)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.905-916
    • /
    • 2008
  • In this paper, we propose a new method which estimates and encrypts significant component of digital hologram using discrete wavelet packet transform (DWPT). After analyzing the characteristics of digital hologram in spatial and frequency domain, the required information for ciphering digital hologram was extracted. Based on this information an ciphering method was proposed with wavelet transform and packetization of subbands. The proposed algorithm can encrypt digital hologram in various robust from selecting transform-level and energy threshold. From analyzing the encryption effect numerically and visually, the optimized parameter for encryption is presented. Without additional analyzing process, one can encrypt efficiently digital hologram using the proposed parameter. Although only 0.032% among total data is encrypted, the reconstructed object dose not identified. The paketization information of subbands and the cipher key can be used for the entire secret key.

Adaptive Block Recovery Based on Subband Energy and DC Value in Wavelet Domain (웨이블릿 부대역의 에너지와 DC 값에 근거한 적응적 블록 복구)

  • Hyun, Seung-Hwa;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.95-102
    • /
    • 2005
  • When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. No consideration of the edge-direction, when recover the lost blocks, can cause block-blurring effects. The proposed directional recovery method in this paper is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. First, the adaptive selection of neighbor blocks is performed based on the energy of wavelet subbands (EWS) and difference of DC values (DDC). The lost blocks are recovered by the linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combined EWS and DDC for better results. The proposed methods out performed the previous methods using fixed blocks.

A Fast Motion Estimation using Characteristics of Wavelet Coefiicients (웨이블릿 계수 특성을 이용한 고속 움직임 추정 기법)

  • Sun, Dong-Woo;Bae, Jin-Woo;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.397-405
    • /
    • 2003
  • In this paper, we propose an efficient motion estimation algorithm which can reduce computational complexity by using characteristics of wavelet coefficient in each subband while keeping about the same image quality as in using MRME(multiresolution motion estimation). In general, because of the high similarity between consecutive frames, we first decide whether the motion exists or not by just comparing MAD(mean absolute difference) between blocks with threshold in the lowest subbands of consecutive two frames. If it turns out that there is no motion in the lowest subband, we can also decide no motion exists in the higher subband. This is due to the characteristics of wavelet transform. Conversely, if we find any motion in the lowest subband, we can reduce computational complexity by estimating high subband motion vectors selectively according to the amount of computational complexity by estimating high subband motion vectors selectively according to the amount of energy in that subband. Experimental results are shown that algorithm suggested in this paper maintains about the same PSNR as MRME. However, the processing time was reduced about 30-50% compared with the MRME.

Digital Watermark Algorithm Based on Energy Distribution of Subband Tree Structure in Wavelet Domain (웨이블릿 영역에서 부대역간 트리구조의 에너지 분포에 의한 디지털 워터마크 삽입 알고리즘)

  • 서영호;최순영;박진영;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.85-88
    • /
    • 2002
  • In this paper, the proposed watermark algorithm is based on energy distribution of the subband coefficients in the frequency domain and edge of the original image in the spacial domain. Out of these information, the KeyMap which decides the embedded position of watermark is produced. And then the binary watermark is embedded into the wavelet coefficient of LL3 subband using KeyMap and LFSR(Linear Feedback Shift Register).

  • PDF