• Title/Summary/Keyword: 웨어러블 밴드

Search Result 55, Processing Time 0.028 seconds

A Technical Planning for Emotion Evaluation of Art Performance using the Human Emotional Data (공연에 대한 고객감동 평가를 위한 감성데이터 활용 방안)

  • Moon, Hyo-Jung;Ko, Hee-Kyung;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.87-91
    • /
    • 2017
  • Recently, several kinds of researches using IoT wearable devices are active in the field of sports, design, emotional sciences and so on. The human bio data such as blood pulse, ECG, SKT signal, and GSR Signal producing from IoT wearable devices such as Watch, Smart-band, Grass can adapt to the meaningful future applications. Using the human's emotional data and a physical status with variation and so on, we can individually get the personal status. Due to knowing the personal emotion or physical status is related and connected to the valuable wallet of customers, the approach is more important in nowadays. Therefore, the personal information can effectively adapt to the marketing of the culture industry, which deals with emotions of customers. The research shows implementation steps for explaining overall architecture of the convergence research between Art and Technologies.

An Investigation of human body influence on Embroidered Textile Dipole Antenna (자수된 직물 다이폴안테나에 미치는 인체영향에 대한 분석)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.155-160
    • /
    • 2021
  • In this paper, we investigated the aptness of embroidered textile dipole antenna as a wearable antenna. We designed an 2.45GHz ISM band embroidered textile dipole antenna on polyester textile. We investigated its characteristics depends on 3 variables, thickness of textile(ttextile), distance between textile and surface of body(gbody) and conductance of surface of body(𝜎body). Thickness of textile(ttextile) was affecting on the antenna resonance frequency(fo). As the conductance of surface of body(𝜎body) was increased the antenna resonance frequency(fo) and the antenna gain were increased slightly. The increment of the distance between textile and surface of body(gbody) caused relatively large increment of the antenna resonance frequency(fo) and the antenna gain. From the results, in the case of designing an embroidered textile dipole antenna as a wearable antenna we should consider carefully the two variables, distance between textile and surface of body(gbody) and thickness of textile(ttextile). Due to its large variation, the distance between textile and surface of body(gbody) may be a technical barrier in designing embroidered textile dipole antenna.

Analysis of sleep patterns using image processing (영상처리를 이용한 수면패턴 측정 및 분석)

  • Cheong, Han-Sol;Ryu, Je-u;Park, Gi-Tae;Bae, Hyo-Seong
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.506-509
    • /
    • 2017
  • 수면 패턴 정보는 잠이 부족한 현대인에게 수면 환경을 개선하는데 도움이 되는 정보이다. 본 논문에서는 영상분석을 통해 수면 패턴 측정 기능을 구현했다. 영상 분석을 통해 동작 정보를 획득하여 수면 패턴 분석을 수행했고 정확한 분석을 위해 동작 감지 노이즈 제거 필터 기능을 추가했다. 또한 시중에 판매되는 웨어러블 스마트밴드와 영상분석을 통해 얻은 각각의 수면패턴 분석 정보를 비교 분석했다.

ECG Arrhythmia Classification System by Supervised Learning (지도학습을 통한 심전도 부정맥 분류 시스템)

  • Jeon, Eun-Kwang;Han, Sang-Wook;Lee, HwaMin;Nam, Yun-Yeong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.649-652
    • /
    • 2016
  • 빅데이터 시대와 다양한 웨어러블 디바이스의 등장으로 사용자로부터 다양한 비정형 데이터를 수집할 수 있고 분석을 통해 정보를 제공하는 연구가 증가하고 있다. 본 논문에서 사용한 nymi 밴드를 통해 사용자의 ECG 신호에 대한 수집이 가능해졌고 수집된 데이터를 이용하여 부정맥과 관련된 데이터 분석이 가능해 졌다. 지도 학습의 방법중 하나인 분류 기법을 사용하여 수집 되는 ECG 신호 데이터에 대한 부정맥 질병을 판단할 수 있는 시스템을 제안한다.

Development of Shoulder Alignment Assistance Equipment for Injury Prevention (상해방지를 위한 어깨정렬 보조장비 개발)

  • Jang, Ji young;Min, Seong Min;Ahn, hana;Kim, Sung Kyeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.301-302
    • /
    • 2021
  • 현재 어깨상해는 많은 운동 참여자에게 빈번히 발생하는 질환이다. 운동 동작 시 올바르지 못한 어깨정렬로 인해 어깨의 안정성이 저해되고 그로인해 다양한 상해들이 유발되어진다. 운동 동작 시 팔꿈치와 손목간의 올바른 정렬은 어깨 안정성에 중요한 요소이다. 따라서 본 논문에서는 팔꿈치보호대와 손목밴드에 센서를 부착하여 웨어러블 장비와 함께 융복합 IT기술을 기반으로 하여 팔꿈치와 손목간의 정상범위를 직관적으로 제시하여 동적 운동 상황에서의 상해를 예방하고자 한다.

  • PDF

Design and development of fabric-type fitness band (직물형 피트니스 밴드 디자인 및 개발)

  • Jeong, Dawun;Lee, Sojung;Kwon, Chae-Ryung;Park, Ihwa;Heo, Seowon;Kim, Dong-Eun
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.4
    • /
    • pp.632-648
    • /
    • 2018
  • This study aims to contribute to the development of sports wearables. It was conducted by a convergence team of professionals in the fashion industry, kinesiology and sports studies, and computer science and engineering. The purpose of the current study was to design and develop a fabric-type fitness band for a sensor to measure acceleration during jump rope exercises. Computer science and engineering professionals developed the Arduino board and sensor, kinesiology and sports studies provided the necessary exercise protocol, and the fashion industry professionals developed the band. First, a fitness band preference survey was completed by men and women between the ages of 20 and 50. Typical uses of the band included tracking exercise amount as measured by the number of steps taken and calories burned. Strap watch closure, a single color and achromatic color, and soft and smooth touch materials were preferred as band design. Second, two fabric-type fitness bands were designed and developed. Design 1 had a 3-dimensional pocket for the sensor, bright blue color, and stretch binding around the edges and for a loop. Design 2 had a flat pocket for the sensor, achromatic color, mesh binding around the edges and two metal loops. Both designs had Velcro as a closure. Third, wear testing of both bands with the sensor were conducted of 15 women in their 20s. They wore the bands during jump rope exercises. Both bands generally satisfied the participants. The Design 2 band was slightly more satisfying than the Design 1 band.

Health Information Monitoring System using Context Sensors based Band (상황센서 기반의 밴드를 이용한 건강정보 모니터링 시스템)

  • Chung, Kyung-Yong;Lee, Young-Ho;Ryu, Joong-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.14-22
    • /
    • 2011
  • It is important for the strategy of service to provide the health information in the environment that the healthcare has been changed focusing on the preventive medicine. Recently, the various applications of u-healthcare have been presented by researchers. In this paper, we proposed the health information monitoring system using the context sensors based band. By wearing the proposed hand, the health status is gathered and vital signals are transmitted to the connected UMPC. It can be easily monitored according to the user locations in real time. To provide the health index according to the temperature, the air conditioning, the illumination, the humidity, and the ultraviolet rays, we use the various XML links extracted from RSS of the Korea Meteorological Administration. The health information is analyzed in terms of factors, such as, the asthma index, the stroke index, the skin disease index, the pulmonary disease index, the pollen concentration index, and the city high temperature index. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the proposed system. Accordingly, the satisfaction and the quality of services will be improved the healthcare.

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.

Wearable Band Sensor for Posture Recognition towards Prosthetic Control (의수 제어용 동작 인식을 위한 웨어러블 밴드 센서)

  • Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2018
  • The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).

Highly Elastic Two-wire Transmission Line E-textile Band for Smart Wearable Circuit Formation (스마트 웨어러블 회로 구성을 위한 고신축성 이선 전송선형 전자섬유 밴드)

  • Roh, Jung-Sim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • Herein, a highly elastic e-textile band with a two-wire transmission line was designed and fabricated for smart clothing applications. A conductive yarn with a very uniform low electrical resistance of 0.0357 Ω/cm was developed and used for the signal and ground lines. To control the elasticity of the e-textile band, spandex yarns were added in the warp direction during knitting and the tension was adjusted. As the length of the e-textile band increased, its RF performance deteriorated. Furthermore, the frequency corresponding to -3 dB S21 was lower in the 30% stretched band than in the unstretched band. For the e-textile bands with lengths 10, 50, and 100 cm, the frequencies corresponding to -3 dB S21 were 107.77, 24.56, and 13.02 MHz when not stretched, and 88.74, 22.02, and 12.60 MHz when stretched by 30%. The fabricated bands were flatter, more flexible, and more elastic than transmission line cables; thus, they can be easily integrated into wearables and smart clothing. However, to increase RF performance and achieve optimum utilization, future studies must focus on the fabrication of transmission lines with lower resistance and reduced distance between the signal and ground lines, and thus the number of transmission lines can be increased.