• Title/Summary/Keyword: 웨버-레이놀즈수

Search Result 3, Processing Time 0.019 seconds

A Study on Boiling Heat Transfer in a Impinging Subcooled Water Jet System (충돌과냉수분류(衝突過冷水噴流)의 비등열전달(沸騰熱傳達)에 관한 연구(硏究))

  • Lee, G.J.;Lee, J.S.;Ohm, K.C.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 1993
  • This paper describes the boiling heat transfer phenomena to be divided into three regions, nonboiling, nucleate boiling and burn-out in the impinging subcooled water jet system. In the nonboiling region, Nusselt number is a function of Prandtl number, Reynolds number and ${\Delta}T_{sub}/T_{ast}$ In the nucleate boiling region, the heat flux increases with increment of the nozzle exit velocity. But the degree of liquid subcooling does not affect the shape of the nucleate boilng curve. The dimensionless correlations can be expressed in the form of $q{\ell}/K_f{\Delta}T_{ast}=C(Bo{\cdot}C_p{\cdot}{\Delta}T_{sat}/Vo^2)^m{\cdot}(Re/We)^n$. The burn-out heat flux increases linearly with increment of the nozzle exit velocity, but independs of degree of subcooling and the supplementary water height.

  • PDF

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubble Column for its Design and Scale-up (가압 삼상슬러리 기포탑의 설계 및 Scale-up을 위한 수력학적 Similarity 해석)

  • Seo, Myung Jae;Lim, Dae Ho;Jin, Hae Ryong;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.720-726
    • /
    • 2009
  • Hydrodynamic similarity was investigated in pressurized three-phase slurry bubble columns by selecting the bubble holdup and pressure drop as objective functions, for the effective design and scale-up of it. In addition, effects of operating variables on the bubble holdup with variation of column diameter were also analyzed. Gas velocity($U_G$), viscosity(${\mu}_{SL,eff}$) and surface tension(${\rho}_{SL}$) of slurry phase, density difference between the slurry and gas phases(${\rho}_{SL}-{\rho}_G$) depending on the operating pressure, pressure drop per unit length(${\Delta}P/L$), column diameter(D) and gravitational acceleration(g) were chosen as governing parameters in determining the bubble holdup and pressure drop in the column. From the dimensional analysis, four kinds of dimensionless groups were derived from the 7 parameters and 4 fundamental dimensions. Effects of dimensionless groups such as Reynolds, Froude and Weber numbers on the bubble holdup in the column were discussed. The pressure drop and bubble holdup could be predicted from the correlation of dimensionless groups effectively, which could be used as useful information for the design and scale-up of pressurized slurry bubble columns.