• Title/Summary/Keyword: 월평균강우량

Search Result 173, Processing Time 0.024 seconds

Characteristics of the Rainfall-Runoff and Groundwater Level Change at Milbot Bog located in Mt.Cheonseong (천성산 밀밭늪의 강우 유출 및 지하수위 변동 특성)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.559-567
    • /
    • 2010
  • This study was conducted to investigate the hydrological characteristics of groundwater level change and rainfall hydrological runoff processes caused by tunnel construction at Milbot bog located in Mt. Cheonseong. Data were collected from July 2004 to May 2008. The results were summarized as follows: The occurrence time of the direct runoff caused by unit rainfall at the Milbot bog were tended to be slower than those at general mountainous basin. Also, runoff did not sensitively respond to amount of rainfall at the most of the long and short term hydrograph. The annual runoff rates from 2004 to 2008 were 0.26, 0.13, 0.16, 0.25 and 0.27, respectively, slightly increased after 2005 regardless of the tunnel construction. Thus, the function of Milbot bog will be weakened, and it supposed to be changed to land in the future because of increasing annual runoff. The annual runoff rate for 4 years was 0.19, which is greatly lower than that of general mountainous basin. The recession coefficient of the direct runoff in short term hydrograph was ranged to 0.89~0.97, which is much larger than that of the general mountainous basin, 0.2~0.8. The recession coefficient of base flow ranged from 0.93 to 0.99, which are similar to general mountainous watershed's values. Groundwater level of Milbot bog increased or decreased in proportion to rainfall intensity, and in the descending time after the groundwater level was reached at peak point, it tends to be decreased very slowly. Also, groundwater level increased or decreased maintaining relatively high value after precedent rainfall. Groundwater level was highest during summer with heavy rainfall, but was lowest during winter. Average groundwater levels decreased annually from 2004 to 2008, -8.48 cm, -14.60 cm, -20.46 cm, -20.11 cm, -28.59 cm, respectively. Therefore, it seems that the Milbot bog is becoming dry and losing its function as a bog.

Ecological Characteristics of Leading Shoot Elongation in the Plantation (I) (조림목(造林木) 신초생장(新稍生長)의 생태학적특성(生態學的特性)에 관(關)한 연구(硏究) (I))

  • Ma, Sang Kyu;Kuk, Ung Hum
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.37-43
    • /
    • 1980
  • This study have done to get the basical information that would be useful to make the ecological planting, selection of suitable species and weeding plan by the relation between the leading shoot elongation of several species and the climatic factors in the plantation. Sampling measurement have been done in the trial forest of Korean German Forest Management Project located in Joil-ri, Samnam-myeon and Ichcon-ri, Sangbug-myeon, Ulju-gun. The former is in lowland at 100m latidude and the latter is in highland of 600 m latitude. The elongation of leading shoot has been measured in the plantation with 10 days interval from the beginning of March in 1979 and the climatic datas has gotten in the weather station closed to the plantation. 1. The change of air temperature and rainfall in each measuring site is like Fig 1. and 2. The similar temperature in 600 m high latitude is coming about 10 days latter than 100 m latitude. 2. Genus pine as Pinus thunbergii, P. rigida, P. rigitaeda. P. koraiensis and P. taeda begin their leading shoot growth during March and air temperature in that time is around $6^{\circ}C$. In highland their beginning of leading shoot elongation has been found out 10 days latter than lowland. However Abies, Larix and Picea has shown to open their leading shoot during May, 40 days late in comparing with genus pine, and then temperature is making around $15^{\circ}C$. But Cryptomeria, Chamaecyparis and Cedrus deodora has shown their leading shoot opening in March in lowland and May in high land. The reason of late opening, specially in highland, seems to be the influence of winter frost. 3. Most of leading shoot elongation of genus pine has finished during the end 10 days of April and May under range of air temperate $10^{\circ}C$ and $20^{\circ}C$ and other species has finished most of their elongation during the end 10 days of May and June with air temperature range of $18^{\circ}C$ to $20^{\circ}C$. So the suitable season of weeding works show to genus pine in May and other species in June. 4. The leading shoot growth of genus pine has started earlier and closed earlier too than other species and, when over than $20^{\circ}C$ air temperature, their growth is decreasing quickly. Pices abies as well show to be decreased suddenly in over than $20^{\circ}C$ temperature. Other species show the similar trend when over than $22^{\circ}C$. This reason is considered as high temperature of summer season. 5. Annual elongated days of leading shoot of Picea abies is 50 days, Abies hollophylla 70 days, and more than 85 percentage of shoot growth of Pinus koraiensis and Larix leptolepsis are growing during 70 dys as well. The shoot growing days of Chamaecyparis, P. rigida, P. rigitaeda, P. taeda and P. shunbergii show longer period as over than 120 days. 6. The shoot elongation times per year of Abies and Picea has closed as one times and Genus pine is continuring their elongation more than two times. But Cryptomeria, Chamaecyparis, Cedrus deodora and Larix show one or two times elongation depending on the measuring site. The reason of continuring elongation more than than two times seems to be influenced by the temperature in summer season except the genetical reason. 7. Depending on the above results, as the high temperature in summer season could give the influence to grow the leading shoot in the plantation, this would be the considering point on the ecological planting and selection of the suitable species to the slope aspect. The elongation pattern by the season show to be the considering point too to decide the the weeding and fertilizer dressing time by the species.

  • PDF

Primary Production and Nitrogen Regeneration by Macrozooplankton in the Kyunggi Bay, Yellow Sea (서해 경기만의 기초생산력 및 질소계 영양염의 재생산에 관한 연구)

  • Chung, Kyung Ho;Park, Yong Chul
    • 한국해양학회지
    • /
    • v.23 no.4
    • /
    • pp.194-206
    • /
    • 1989
  • Seasonal variations of nutrients (ammonium, nitrite, nitrate, phosphate and silicate), primary productivity and ammonium regeneration rate of macrozooplankton were investigate to understand the relationship between nitrogen recycling and nitrogen requirement by phytoplankton from Feburuary 1986 to November 1987 in the Kyunggi Bay, shallow estuarine water of Yellow Sea. In general, nutrients increased during the winter and depleted during the spring and the early summer except temporally sharp increase after flood in September. Ammonium was prevalently generally found in high concentration throughout the study area and it occasionally raised N/P ratio in the range of 30 to 70 as in the freshwater environment. Daily net primary productivity ranged from 30.3 to 3580.0 mgC/$m^2$/d with an average of 883.9 mgC/$m^2$/d. Annual primary productivity was determined to be 320.0 gC/$m^2$/yr. Carbon assimilation number ranged from 2.9 to 19.4 mgC/mg chl-a/h which increased in the summer and decreased in the winter. Nitrogen requirement by phytoplankton ranged from 0.4 to 45.0 mg at-N/$m^2$/d and turnover time of inorganic nitrogen ranged from 2.4 in the late summer to 122.7 days in the winter. Nitrogen regeneration rate of mixed macrozooplankton determined by bottle incubation method ranged from 0.02 to 1.34 mg at-N $m^2$/d and it could contribute from 2.8 to 38.7% with an annual average of 14.9% of total nitrogen requirement by phytoplankton in this shallow estuarine environment.

  • PDF

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

An Estimation of NPS Pollutant Loads using the Correlation between Storm Water Runoff and Pollutant Discharge in a Small Urban Drainage Basin (도시소유역에서의 유출과 비점원오염물 배출 간의 상관관계 수립에 의한 NPS 오염물 배출량의 산정)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.85-95
    • /
    • 1993
  • Three purposes of this study are as follows: The first was the development of the extention method for the limited data observed in an urban drainage basin. The second was the analysis of the correlation between storm water runoff and NPS(non-point source) pollutant discharge, The last was the calculation of the monthly and annual specific NPS loads using the established correlation. the selected model was the SWMM monthly and annual specific NPs loads using the established correlation. The selected model was the SWMM (Storm Water Management model) developed by the US EPA(environmental Protection Agency). As a result of this study, the best correlation between storm wate runoff and NPS pollutants discharge was produced by the non-linear correlation between runoff rate(mm/hr)and specific loads rate(g/ha/sec)for all pollutants studied ; SS, COD, BOD, and TN. The best correlation through the analysis based on evently total mass was made by the linear correlation between the specific accumulated runoff(mm) and the specific accumulated loads(kg/ha) for CASE 1., and by the non-linear correlation for CASE 2. The NPS annual specific loads for the urban basin studied were 4933 kg/ha/year for SS, 775kg/ha/year for BOD, 3094kg/ha /year for COD,257kg/ha/year for TN, respectively. And the proportion of the NPS annual specific loads to the total annual specific loads were 42 % for SS, 13 % for BOD, 29% for COD, and 21 % for TN.

  • PDF

Landslide Types and Susceptibilities Related to Geomorphic Characteristics - Yeonchon-Chulwon Area - (지형특성에 따른 산사태의 유형 및 취약성 - 연천-철원지역을 대상으로 -)

  • 김원영;이사로;김경수;채병곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.115-130
    • /
    • 1998
  • An analysis on landslide types and susceptibilities associated with geomorphic characteristics has been conducted with 916 landslide inventories in Yeonchon-Chulwon District, where two day's heavy rainfall was concentrated on July, 1996. The precipitation during the 2 days, which is equivalent to 0.372 of event cofficient, can cause large landslides based on Olivier's equation. Sliding materials are dominantly composed of debris mixed with rock fragments and soil derived from colluvium and residual soils. 66% of the landslides are belong to debris flow md 23% are due to sediments flow, in accordance with the classification of sliding materials. Most of landslides(> 90%) are small and shallow, less than l00m in length and about 1m in depth, and classified as transitional type. Granite is more susceptible as much as 4.7 times than metamorphic rocks and 2.7 times than volcanic rocks, probably due to higher weathering grade of granite. The highest landslide frequency is concentrated on the areas between 200 and 300m in height and on the slopes between $10-20^{\circ}$ in dgree. More than 50% of landslides occurred under these geomorphic conditions. Consequently, colluviums and residual soils distributed on the gentle slopes are most susceptible to the landslides of the area.

  • PDF

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

A Study on the Evaluation of Potential Hydro-electric Power in North Korea (북한의 수력발전가능량 산정 및 평가에 대한 연구)

  • Park, Miri;Ahn, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • This study is to analyze and evaluate water resource development potential in North Korea. The study was conducted to analyze selected potential hydropower as an indicator to evaluate water resource development potential. Potential hydropower means theoretical value about the potential capacity of river. It is used to evaluate the amount of development through the hydropower generation. For calculating potential hydropower, monthly average and annual average of rainfall for each river basin were calculated by using the data of 27 rainfall stations in North Korea. As a result of the calculation of theoretical potential hydropower by rainfall in the seven major basins in North Korea, the Aprok River basin was analyzed to be the largest with $7,562.2{\times}10^3kW$. The efficiency and utilization rate of theoretical potential hydraulic power in South Korea and North Korea was 42.3% and 36.2%, respectively. The Daedong River basin's potential hydropower utilization rate is 12.3%, which is the lowest in North Korea. In the case of Daedong River basin, more than 40% of the total population is inhabited, so demand for water and electricity is expected to be the largest. Therefore, the Daedong River basin is considered as a priority area for water resource development. The results of this study are expected to be used as basic data for future water resource development projects and research activities in North Korea.

The feasibility study for reclaimed wastewater reuse in Saek-dal of Jeju island (제주 색달하수처리장 방류수 재이용 타당성 평가)

  • Lee, Kwang-Ya;Kim, Hae-Do;Joo, Jin-Hun;Kim, Young-Jin;Kang, Su-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.439-439
    • /
    • 2012
  • 본 연구의 목적은 색달하수처리장 방류수를 농업용수 및 조경용수 등으로 활용하기 위해 하수 처리수 재이용 사업 타당성을 분석하고자 한다. 색달하수처리장 하수재이용사업은 제주도의 지하수자원 보존과 수자원 이용의 고도화 및 방류수 재이용을 통한 갈수기 농업용수 보급으로 물자원(지하수)을 절약하고자 색달하수처리장을 대상으로 하수처리수를 농업용수로 공급하는 사업이다. 대상지역은 서귀포시 예래동에 위치하고 있으며, 중문관광단지가 소재한 마을로 제주관광의 중심지이다. 서귀포시의 총 인구는 153,797명이며 하수도 보급률은 77.7%이다('10 제주특별자치도 통계연보). 색달하수처리장이 위치한 예래동의 농지면적이 1,122ha이며, 밭(772.6)과 과수원(280.2) 등 제주도의 전형적인 농촌마을이다. 대상지역의 주요작물은 감귤, 무, 마늘, 양배추 등이 많이 재배된다. 제주도는 연평균 강수량이 1,832.6mm로 전국평균 1,274 mm 보다 많은 편이며, 월별 강수량은 6~8월까지 3개월 동안 연 강우량의 44%정도가 내려 여름 장마철에 집중되는 것으로 나타났다. 대상지구의 필요수량은 농업생산정비 계획설계기준에 제시된 방법을 이용하여 산정하였다. 지구내 재이용수를 공급할 관정 4개소의 총 설계 채수량은 $2,916m^3/day$, 급수면적은 125.0ha이며, 10년한발(가뭄)시 안정적인 농업용수 공급을 위하여 $4,964m^3/day$(농업용수 $3,834m^3/day$, 조경용수 $1,130m^3/day$)이 필요하다. 하수처리수 재이용을 위한 처리시설의 연간 유지관리비는 인건비, 전력비, 시설물 내구연한을 고려하여 적용 하였으며, 상수도 생산비 절감 비용과 하수재이용수 생산단가를 통한 단위 편익을 산정하면 401.5원/$m^3$ 이다. 연차별 수익으로 산정하여 비용 편익 비율(B/C Ratio)을 나타내면 1.22로 나타났다. 본 연구의 결과로부터, 대상지구의 수자원여건, 입지여건, 장래 수요, 등을 고려할 때, 제주 색달 하수처리장의 하수처리수의 농업용수재이용 사업은 타당성이 매우 높다고 할 수 있다. 그리고 특히 이 지역은 관광단지의 조경용수 수요(중문골프장 등)가 있어 용수의 유료공급이 가능하고 이를 유지관리비로 충당할 수 있어 타지역에 비해 사업의 경제성과 환경보전성이 매우 크다.

  • PDF

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.