• Title/Summary/Keyword: 원통다관

Search Result 33, Processing Time 0.018 seconds

A Study on the Development of Plugging Margin Evaluation Method Reflected the Fouling of a Shell-and-Tube Heat Exchanger (다관원통형 열교환기의 파울링 현상을 고려한 관막음 여유 평가법 개발 연구)

  • Hwang, Kyeong-Mo;Jin,Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1384-1389
    • /
    • 2004
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation mettled reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the future fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.

A Study on the Heat Exchanger Fouling Characteristics of Sludge Incinerator at the IronWorks (제철슬러지 소각로 열교환기에서의 파울링특성 연구)

  • 박상일;김정근;김기홍;박용준;조성문
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • A study was performed to measure and analyze the gas-side fouling of heat exchanger to cool the exhaust gas from sludge incinerator at ironworks. The incinerator gas passes through inside of the vertical tubes of heat exchanger to preheat the combustion air. This kind of fouling occurs at the entrance region of the heat exchanger and thus the perforated fouling plate was designed to measure the gas-side fouling and to analyze the particulate deposit. As a result of analysis, the particulate deposition rate was influenced by temperature, particulate composition and size and also the deposition patterns were different according to the location of perforated fouling plate. The computational analysis was performed to obtain the deposition rates at the perforated fouling plate and the calculation showed that the deposition rate was varied with the hole size and particulate size. It was proved that the fouling at the entrance region of heat exchanger could be measured by the perforated fouling plate designed in this study.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.