• Title/Summary/Keyword: 원전연료집합체

Search Result 3, Processing Time 0.019 seconds

Welding Parts and Integrity Test in a PWR Fuel Assembly (경수로용 원전연료집합체에서의 용접부위 및 건전성 시험)

  • 송기남;윤경호;강흥석
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.55-57
    • /
    • 2003
  • The fuel assemblies as the nuclear fuel for the pressurized water reactor(PWR) are loaded in the reactor core throughout the residence time of three to five years. The fuel assembly is manufactured using special welding processes and under strict quality assurance and control systems. In this paper welding parts, welding methods, and welding tests for the integrity of the PWR fuel assemblies are introduced.

  • PDF

Crush Strength Analysis of a Spacer Grid for PWR Nuclear Fuel Considering Mechanical Properties in Weld Zone (용접부 기계적 물성치를 고려한 경수로 핵연료 지지격자의 충격해석)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.7-13
    • /
    • 2012
  • A spacer grid which is one of the most important structural components in a pressurized water reactor fuel is an interconnected array of slotted grid straps, welded at the intersections to form an egg-crate structure. The spacer grid is required to not only protect fuel rods stably but also have sufficient lateral crush strength for the sake of enabling shut-down of the nuclear reactor during abnormal operating environments. Then, the lateral crush strength of the spacer grid is closely related with welding quality of the spacer grid. Previous research on the crush strength analysis of the spacer grid had been performed using only parent material properties. In this study, to investigate the effect on the crush strength of the spacer grid when used mechanical properties in weld zone instead of parent material properties, crush strength analysis considering mechanical properties in weld zone obtained from the instrumented indentation technique was performed and compared the results with the previous research.

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.