• Title/Summary/Keyword: 원자

Search Result 4,624, Processing Time 0.029 seconds

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Approach to the Extraction Method on Minerals of Ginseng Extract (추출조건(抽出條件)에 따른 인삼(人蔘)엑기스의 무기성분정량(無機成分定量)에 관(關)한 연구(硏究))

  • Cho, Han-Ok;Lee, Joong-Hwa;Cho, Sung-Hwan;Choi, Young-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.95-106
    • /
    • 1976
  • In order to investigate chemical components and mineral of ginseng cultivated in Korea and to establish an appropriate extraction method, the present work was carried out with Raw ginseng(SC), White ginseng(SB) and Ginseng tail(SA). The results determined could be summarized as follows : 1. Among the proximate components, moisture content of SC, SB and SA were 66.37%, 12.61% and 12.20% respectively. The content of crude ash in SA was the highest value of three kinds of ginseng root: SA 6.04%, SB 3.52% and SC 1.56%. The crude protein of Dried ginseng root(SA and SB) was about 12-14%, which was more than two times compared with that of SC(6.30%) The content of pure protein seemed to be in similar tendency with that of crude protein in three kinds of ginseng root: 2.26% in SC, 5.94% in SB and 5.76% in SA. There was no significant difference in the content of fat among the kinds of ginseng root. $(1.1{\sim}2.5%)$ 2. The highest Ginseng extract was obtained by use of Continuous extractor which is a modified Soxhlet apparatus for 60 hours extraction with 60-80% ethanol. 3. Ginseng and the above-mentioned ginseng extract (Ginseng tail extract: SAE, White Ginseng extract : SBE, Raw Ginseng extract: SCE) were analyzed by volumetric method for the determination of Chlorine and Calcium, by colorimetric method for that of Iron and Phosphorus, by Atomic Absorption Spectrophotometer for that of Zinc, Copper and Manganese. The results were as follows : 1. The content of phosphorus in SA, SB and SC were 1.818%, 1.362%, 0.713% respectively and phosphorus content in three kinds of extract were in low level (SAE: 0.03%, SBE: 0.063%, SCE: 0.036%) 2. In the Calcium content, SA, SB and SC were 0.147%, 0.238%, 0.126% and the Calcium contents of Ginseng extracts were 0.023%, 0.011% and 0.016%. The extraction ratio of Calcium from SA was the highest value (15.6%), while that in the case of SB was 4.6%. 3. The Chlorine content of SA was 0.11%, this was slightly higher than others(SB: 0.07%, SC: 0.09%) and extraction ratio of SA and SB were 36.4%, 67.1% while that of SC was 84.4%. 4. The Iron content of SA, SB and SC were 125ppm, 32.5ppm and 20ppm but extraction ratio was extremely low (SAE: 1.33%, SBE: 0.83%, SCE: 1.08%), 5. The Manganese content of SA, SB and SC were 62.5ppm, 25.0ppm and 5.0ppm respectively but the Manganese content of extract could not determined, Copper content of SA, SB and SC were 15.0ppm, 20.0ppm and those of extract were 7.5ppm, 6.5ppm, 4.5ppm while those of extraction ratio were 50%, 32.5% and 90% respectively, Zinc was abundant in Ginseng compared with other herbs, (SA: 45.5ppm, SB: 27.5ppm and SC: 5.5ppm) and the extracted amount were 4.5ppm, 1.25ppm 1.50ppm respectively.

  • PDF

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

A Review Examining the Dating, Analysis of the Painting Style, Identification of the Painter, and Investigation of the Documentary Records of Samsaebulhoedo at Yongjusa Temple (용주사(龍珠寺) <삼세불회도(三世佛會圖)> 연구의 연대 추정과 양식 분석, 작가 비정, 문헌 해석의 검토)

  • Kang, Kwanshik
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.97
    • /
    • pp.14-54
    • /
    • 2020
  • The overall study of Samsaebulhoedo (painting of the Assembly of Buddhas of Three Ages) at Yongjusa Temple has focused on dating it, analyzing the painting style, identifying its painter, and scrutinizing the related documents. However, its greater coherence could be achieved through additional support from empirical evidence and logical consistency. Recent studies on Samsaebulhoedo at Yongjusa Temple that postulate that the painting could have been produced by a monk-painter in the late nineteenth century and that an original version produced in 1790 could have been retouched by a painter in the 1920s using a Western painting style lack such empirical proof and logic. Although King Jeongjo's son was not yet installed as crown prince, the Samsaebulhoedo at Yongjusa Temple contained a conventional written prayer wishing for a long life for the king, queen, and crown prince: "May his majesty the King live long / May her majesty the Queen live long / May his highness the Crown Prince live long" (主上殿下壽萬歲, 王妃殿下壽萬歲, 世子邸下壽萬歲). Later, this phrase was erased using cinnabar and revised to include unusual content in an exceptional order: "May his majesty the King live long / May his highness the King's Affectionate Mother (Jagung) live long / May her majesty the Queen live long / May his highness the Crown Prince live long" (主上殿下壽萬歲, 慈宮邸下壽萬歲, 王妃殿下壽萬歲, 世子邸下壽萬歲). A comprehensive comparison of the formats and contents in written prayers found on late Joseon Buddhist paintings and a careful analysis of royal liturgy during the reign of King Jeongjo reveal Samsaebulhoedo at Yongjusa Temple to be an original version produced at the time of the founding of Yongjusa Temple in 1790. According to a comparative analysis of formats, iconography, styles, aesthetic sensibilities, and techniques found in Buddhist paintings and paintings by Joseon court painters from the eighteenth and nineteenth centuries, Samsaebulhoedo at Yongjusa Temple bears features characteristic of paintings produced around 1790, which corresponds to the result of analysis on the written prayer. Buddhist paintings created up to the early eighteenth century show deities with their sizes determined by their religious status and a two-dimensional conceptual composition based on the traditional perspective of depicting close objects in the lower section and distant objects above. This Samsaebulhoedo, however, systematically places the Buddhist deities within a threedimensional space constructed by applying a linear perspective. Through the extensive employment of chiaroscuro as found in Western painting, it expresses white highlights and shadows, evoking a feeling that the magnificent world of the Buddhas of the Three Ages actually unfolds in front of viewers. Since the inner order of a linear perspective and the outer illusion of chiaroscuro shading are intimately related to each other, it is difficult to believe that the white highlights were a later addition. Moreover, the creative convergence of highly-developed Western painting style and techniques that is on display in this Samsaebulhoedo could only have been achieved by late-Joseon court painters working during the reign of King Jeongjo, including Kim Hongdo, Yi Myeong-gi, and Kim Deuksin. Deungun, the head monk of Yongjusa Temple, wrote Yongjusa sajeok (History of Yongjusa Temple) by compiling the historical records on the temple that had been transmitted since its founding. In Yongjusa sajeok, Deungun recorded that Kim Hongdo painted Samsaebulhoedo as if it were a historical fact. The Joseon royal court's official records, Ilseongnok (Daily Records of the Royal Court and Important Officials) and Suwonbu jiryeong deungnok (Suwon Construction Records), indicate that Kim Hongdo, Yi Myeong-gi, and Kim Deuksin all served as a supervisor (gamdong) for the production of Buddhist paintings. Since within Joseon's hierarchical administrative system it was considered improper to allow court painters of government position to create Buddhist paintings which had previously been produced by monk-painters, they were appointed as gamdong in name only to avoid a political liability. In reality, court painters were ordered to create Buddhist paintings. During their reigns, King Yeongjo and King Jeongjo summoned the literati painters Jo Yeongseok and Kang Sehwang to serve as gamdong for the production of royal portraits and requested that they paint these portraits as well. Thus, the boundary between the concept of supervision and that of painting occasionally blurred. Supervision did not completely preclude painting, and a gamdong could also serve as a painter. In this light, the historical records in Yongjusa sajeok are not inconsistent with those in Ilseongnok, Suwonbu jiryeong deungnok, and a prayer written by Hwang Deok-sun, which was found inside the canopy in Daeungjeon Hall at Yongjusa Temple. These records provided the same content in different forms as required for their purposes and according to the context. This approach to the Samsaebulhoedo at Yongjusa Temple will lead to a more coherent explanation of dating the painting, analyzing its style, identifying its painter, and interpreting the relevant documents based on empirical grounds and logical consistency.