• Title/Summary/Keyword: 원자력사고

Search Result 888, Processing Time 0.029 seconds

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant (원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Kim, Byung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.209-221
    • /
    • 1994
  • In the case of a severe accident of a nuclear power plant, the whole body dose and the relative importance of the radionuclides during the lifetime of an exposed person were estimated for each exposure pathway with distances from the release point. The external exposure pathways due to immersion of radioactive cloud and deposition of radioactive materials on the ground, and the internal exposure pathways due to inhalation and ingestion of contaminated foodstuffs were considered. The effects due to the ingestion of contaminated foodstuffs were estimated considering the variation of radioactive concentration in the foodstuffs according to deposition time and elapsed time after deposition using a dynamic ingestion pathway model applicable to Korean environment, named 'KORFOOD'. As the results up to 80 km from the release point, the effects due to ingestion of contaminated foodstuffs showed the highest contribution to total exposure dose. The contribution of I isotopes was the highest in the case of the external dose due to immersion of radioactive cloud and internal dose due to inhalation. The contribution of Cs isotopes was highest in the case of the external dose due to deposition of radioactive materials on the ground. In the case of the internal dose due to ingestion of contaminated foodstuffs, Cs deposition in summer and Sr deposition in winter, respectively, were the most dominant radionuclide to whole body.

  • PDF

A Methodology for Determining the Optimal Durations of the Use of Contaminated Crops As Feedstuffs of Cattle Following a Nuclear Accident (원자력 사고후 가축 사료로서 오염 농작물 이용에 대한 최적기간 결정 방법론)

  • Hwang, Won-Tae;Han, Moon-Hee;Choi, Yong-Ho;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.65-72
    • /
    • 1999
  • A methodology for determining the optimal durations of the use of contaminated crops as feedstuffs of cattle was designed based on the cost-benefit analysis method. The results of application for pigs, an omnivorous cattle, were discussed for the hypothetical deposition of radionuclides on August 15 when a number of crops are fully developed in Korean agricultural conditions. For investigating the relative cost-effectiveness of the use of contaminated crops as feedstuffs, the net benefit was compared with the case of the direct disposal of contaminated crops. The time-dependent radionuclide concentration in crops after the deposition was predicted using a dynamic food chain model DYNACON. The net benefit from the actions was quantitatively evaluated in terms of cost equivalent of doses and monetary costs of implementing the action. It depended on a number of factors such as radionuclides, variety of crops supplied as feedstuffs and duration of the actions. The use of contaminated crops as feedstuffs was more cost effective for $^{90}Sr\;or\;^{131}I$ deposition than for $^{137}Cs$ deposition.

  • PDF

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.

Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials (원자력시설의 사고시 가축의 공기 흡입과 토양 섭취가 육류의 방사능 요염에 미치는 영향)

  • 황원태;김은한;서경석;정효준;한문희
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide $^{l37}Cs$ than a short-lived radionuclide $^{131}I$ (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  • PDF

Development of a Raman Lidar System for Remote Monitoring of Hydrogen Gas (수소 가스 원격 모니터링을 위한 라만 라이다 시스템 개발)

  • Choi, In Young;Baik, Sung Hoon;Park, Nak Gyu;Kang, Hee Young;Kim, Jin Ho;Lee, Na Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.166-171
    • /
    • 2017
  • Hydrogen gas is a green energy sources because it features no emission of pollutants during combustion. But hydrogen gas is very dangerous, being flammable and very explosive. Hydrogen gas detection is very important for the safety of a nuclear power plant. Hydrogen gas is generated by oxidation of nuclear fuel cladding during a critical accident, and leads to serious secondary damage in the containment building. This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas. A small, portable Raman lidar system was designed, and a measurement algorithm was developed to quantitatively measure hydrogen gas concentration. To verify the capability of measuring hydrogen gas with the developed Raman lidar system, experiments were carried out under daytime outdoor conditions by using a gas chamber that can adjust the hydrogen gas density. As results, our Raman lidar system is able to measure a minimum density of 0.67 vol. % hydrogen gas at a distance of 20 m.

Combining of GIS and the Food Chain Assessment Result around Yeonggwang Nuclear Power Plant (영광 원전 주변 육상생태계 평가 결과와 GIS의 연계)

  • Kang, H.S.;Jun, I.;Keum, D.K.;Choi, Y.H.;Lee, H.S.;Lee, C.W.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.237-245
    • /
    • 2005
  • The distribution of radionuclides in soil and plants were calculated, assuming an accidental release of radionuclides from Yeonggwang Nuclear Power Plant. The results which show the concentration change with time and regions were displayed by GIS. GIS Included the commercial program, ArcView(ESRI), and a basic digital map of 1:5000 scale for 30km by 30km area around Yeonggwang Nuclear Power Plant. The target material was $^{137}Cs$ in soil around Yeonggwang area. Given denosited $^{137}Cs$ concentrations, ECOREA-II code computed the $^{137}Cs$ concentration of the soil and the plant in the area divided by 16 azimuth, 480 unit cells in total in which the concentrations also varied with time. The results were introduced into the attributed data of previously designed polygon cells in ArcView. In order to display the concentration change with time by monotonic color, the RGB value for ArcView color lamp was controlled. This display is useful for the public to understand the concentration change of radionuclide around Yeonggwang area definitely.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.