• Title/Summary/Keyword: 원자력사고

Search Result 888, Processing Time 0.027 seconds

A Rapid Dose Assessment and Display System Applicable to PWR Accident (선량평가 및 Display시스템)

  • Moon, Kwang-Nam;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.67-77
    • /
    • 1988
  • The necessity of developing a rapid dose assessment system has been emphasized for an effective emergency response of mitigation of off-site radiological consequences. A microcomputer program based on a rapid dose assessment model of the off-site radiological consequences is developed for various accdident sinarios for the Nuclear Power Plants in Korea. This model, which is consists of the user answering-question input format as a menu driven method and the output format of table and graphic types, is helpful to decision-making on Emergency Preparedness by being more rapidly able to implement the off-site dose assessment and to interpret the result.

  • PDF

Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations (원자로 동특성 방정식의 수치해석에 관한 연구)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.98-109
    • /
    • 1983
  • A two-step alternating direction explicit method is developed to solve the space-dependent reactor kinetics equations in two space dimensions. As a special case in the general class of alternating direction implicit methods, this method is analysed for accuracy and stability. To test the validity of this method it is compared with the implicit-difference method used in the TWIGL program. It is shown that the two methods are closely related. The time dependent neutron fluxes of the pressurized water reactor (PWR), during control rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident, are obtained from the numerical calculation results.

  • PDF

Prompt Fission Neutron Spectra in Supercritical Accidents (Influence on the Fission Spectrum-averaged cross-sections of Some Threshold Activation Reactions)

  • Ro, Seung-Gy;Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 1975
  • On the assumption that the spectral distribution of prompt fission neutrons released from supercritical accidents can be expressed by the generalized Cranberg form with two spectral parameters, which is then transformed into the single parameter form, a variation of the fission spectrum-averaged cross-sections for some threshold reactions with varying the spectral parameter has teen calculated using an electronic computer. It appears that the average cross-sections are very sensitive to the spectral deformation, especially those for the detectors having the threshold at high neutron energy are high compared to those for the detectors of which the threshold energies are comparatively low.

  • PDF

Study on the electrical characteristics of prismatic cell based on various C-rate and validity of nuclear power plant (다양한 C-rate기반 각형 셀의 전기적 특성분석 및 원전 비상전원 타당성 연구)

  • Kim, Gunwoo;Park, Seongyun;Lee, Pyeongyeon;Kim, Jonghoon;Park, Sungbaek
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.139-140
    • /
    • 2018
  • 원전 사고를 계기로 비상전원공급용 축전지의 중요성이 부각되고 있다. 본 논문에서는 비상전원공급용 축전지가 기존의 납축전지를 대신하여 리튬계열 축전지의 사용이 고려되는 상황에서 NMC($LiNiMnCoO_2$) 고용량 94Ah 각형 셀의 적용성을 판단하기 위한 기초적인 전기적 특성실험을 진행했다. 원전 비상전원공급용 축전지가 리튬계열 축전지로 사용 될 때의 최적의 C-rate를 찾기 위해 전기적 실험을 통해 분석하였다.

  • PDF

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

Study on the Safety Analysis on the Cooling Performance of Hybrid SIT under the Station Blackout Accident (발전소 정전사고 시 Hybrid SIT의 냉각성능 평가를 위한 안전해석에 관한 연구)

  • Ryu, Sung Uk;Kim, Jae Min;Kim, Myoung Joon;Jeon, Woo Jin;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.64-70
    • /
    • 2017
  • The concept of Hybrid Safety Injection Tank (Hybrid SIT) proposed by the Korea Atomic Energy Research Institute (KAERI) has been introduced for the purpose of application to the Advanced Power Reactor Plus (APR+). In this study, the SBO situation of the APR+ was analyzed by using the MARS-KS code in order to evaluate whether the operation of the Hybrid SIT has an effect on the cooling performance of the Reactor Coolant System (RCS). According to the analysis, when the actuation valve on the pressure balancing line (PBL) is opened, the Hybrid SIT's pressure rises rapidly, forming equilibrium with the RCS pressure; subsequently, a flow is injected from the Hybrid SIT into the reactor vessel through the direct vessel injection (DVI) line. The analysis showed that it is possible to keep the core temperature below melting temperature during the operation of a Hybrid SIT.

Evaluation of the Actual Conditions for the Construction of a Firefighting Safety Management System in Domestic Power Plants (국내발전소 소방안전경영시스템구축을 위한 실태평가에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • Fire accidents in foreign countries, like the accident in a thermal power plant in Beijing, the accidents in domestic power plants, including Boryeong Power Plant in 2012 and Taean Power Plant in 2016, a disaster in a nuclear power plant in Fukushima in 2011 or the large-scale power failure in California in 2001 are safety accidents related to electric power, which caused losses in the people's stable lives and the countries. Electricity has an absolute impact on the people's life and the economy, so we can easily expect the serious situation affecting economic growth as well as direct damage to the protection of the people's lives and the losses of properties, if there are fire or explosion accidents or radioactive leak because of negligence in safety management, or problems because of natural disasters like an earthquake in power plants that generate electricity. In this study, it was drawn the improvement of the organizations exclusively in charge of firefighting, the operation of a program for the improvement of professional competency, the development of a customized firefighting management system for plants for systematic firefighting safety management and the improvement of the earthquake-proof correspondence system, which has recently become an issue, as measures for improvements through a survey of the actual conditions concerning the necessity of the construction of a firefighting safety management system for power plants with five power generation companies, including Korea Southern Power Co., Ltd., and the persons in charge of firefighting safety Korea Hydro & Nuclear Power Co., Ltd.

Improvement of Atmospheric Dispersion Assessment for Accidental Releases Using a Fuzzy Logic Inference Method (퍼지 논리 추론 방법을 이용한 사고시 대기확산 평가 개선)

  • Na, Man-Gyun;Sim, Young-Rok;Kim, Soong-Pyung
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • In order to assess the atmospheric dispersion for the accidental releases of nuclear power plants, in calculating X/Q values in the XOQAR and PAVAN codes which are based on Reg. Guide 1.145, the X/Q and frequency values are plotted on log-normal paper. Starting with the highest X/Q value of this plot, the codes compare the slope of the line drawn from this point to every other point within an increment containing ten X/Q values. If there are fewer than ten values, only the number available are used. The coefficients that produce the line with the least negative slope are saved. The end point of this line is used as the next starting point, from which slopes to the points within the next increment, containing ten X/Q values, are compared. The X/Q values corresponding to the cumulative frequency values 0.5%, 5% or 50% are calculated to search for the $0{\sim}2$ hour X/Q value that tends to be a very conservative value. In this work, a fuzzy logic inference method is used for nonlinear interpolation of the X/Q values versus the cumulative frequency. The fuzzy logic inference method is known to be a food technique for nonlinear interpolation. The proposed method was applied to a potential accidential radioactive release of the Yonggwang nuclear power plant, which gives more realistic X/Q values.

  • PDF

Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event (추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-86
    • /
    • 2019
  • The biggest obstacle in the nuclear power generation is the high level radioactive waste such as the spent nuclear fuel. High level radioactivities and generated heat make the safe treatment of the spent nuclear fuel very difficult. Nowadays, the only treatment method is a deep geological disposal technology. This paper treats the structural safe design problem of the spent nuclear fuel disposal canister which is one of the core technologies of the deep geological disposal technology. Especially, this paper executed the nonlinear structural analysis for the stresses and deformations occurring in the canister due to the impulsive force applied to the spent nuclear fuel disposal canister in the case of an accidental drop and ground impact event from the transportation vehicle in the repository. The main content of the analysis is about that the impulsive force is obtained using the commercial rigid body dynamic analysis computer code, RecurDyn, and the stress and deformation caused by this impulsive force are obtained using the commercial finite element static structural analysis computer code, NISA. The analysis results show that large stresses and deformations may occur in the canister, especially in the rid or the bottom of the canister, due to the impulsive force occurring during the collision impact period.

Safety Evaluation on Real Time Operating Systems for Safety-Critical Systems (안전필수(Safety-Critical) 시스템의 실시간 운영체제에 대한 안전성 평가)

  • Kang, Young-Doo;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3885-3892
    • /
    • 2010
  • Safety-Critical systems, such as Plant Protection Systems in nuclear power plant, plays a key role that the facilities can be operated without undue risk to the health and safety of public and environment, and those systems shall be designed, fabricated, installed, and tested to quality standards commensurate with the importance of the functions to be performed. Computer-based Instrumentation and Control Systems to perform the safety-critical function have Real Time Operating Systems to control and monitoring the sub-system and executing the application software. The safety-critical Real Time Operating Systems shall be designed, analyzed, tested and evaluated to have capability to maintain a high integrity and quality. However, local nuclear power plants have applied the real time operating systems on safety critical systems through Commercial Grade Item Dedication method, and this is the reason of lack of detailed methodology on assessing the safety of real time operating systems, expecially to the new developed one. This paper presents the methodology and experiences of safety evaluation on safety-critical Real Time Operating Systems based upon design requirements. This paper may useful to develop and evaluate the safety-critical Real Time Operating Systems in other industry to ensure the safety of public and environment.