• Title/Summary/Keyword: 원심임펠러

Search Result 144, Processing Time 0.026 seconds

Two-Zone Modeling for Centrifugal Impellers (원심형 임펠러에 대한 이구역 모델링)

  • Oh, Hyoung Woo;Chung, Myung Kyoon;Kim, Jae Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 1999
  • This paper presents a systematic two-zone modeling for reliable performance prediction of centrifugal compressors. In order to improve the predictive capability, a modified jet slip factor is developed and new corrections for the wake flow deviation and mass fraction are suggested based on the comprehensive experimental data of the three Eckardt impellers. The proposed two-zone modeling is tested against nine sets of measured data of centrifugal compressors. The results are also compared with those obtained by the mean streamline analysis. It was found that the predictions by the present two-zone modeling agree fairly well with experimental data for a variety of centrifugal compressors over the wide operating conditions.

A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor (원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

Experimental investigation of impeller-volute interaction on a centrifugal turbomachinery (원심형 터보기계의 임펠러-볼류트 유동간섭에 관한 실험적 연구)

  • Lee, Kyung-Hoon;Joo, Won-Gu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.219-225
    • /
    • 2000
  • Primary function of a centrifugal compressor volute is to serve the flow from the impeller and diffuser to pipe system. But losses in volutes at off-design lead to poor stage efficiency and reduction of operating range. This is largely caused by the interaction between the impeller and volute flow fields. The magnitude of distortion is increased as the operating point is away from the design point and, as a result, the interaction between the impeller and volute is stronger. The objective of present study is to find the characteristics of tile flow in the diffuser and volute of the centrifugal compressor with rectangular cross-sectional volute. The measurements are carried out in two cases with the existence and nonexistence of the volute casing. The detailed pressure is presented by comparing the experimental results obtained at two cases with each others.

  • PDF

Measurement Techniques on Unsteady Flow at Impeller Exit (임펠러 출구에서의 비정상 유동 측정 기법)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.81-87
    • /
    • 1999
  • This study presents the measurement techniques on the periodic fluctuating flow such as the discharge flow of a centrifugal impeller in an unstable operating region. During rotating stall, the flow at the exit of a centrifugal compressor impeller fluctuates periodically with a lower frequency than that of the blade passing. To observe the blade-to-blade flow characteristics during the rotating stall, the phases of all the sampled data sets should be adjusted to those of the reference signals with two processes, in these processes, DPLEAT (Double Phase-Locked Ensemble Averaging Technique) can be used. From these measurements and data processing techniques, the characteristics illustrated a blade-to-blade flow with high frequency, but also a periodic rotating stall flow with a low frequency at the centrifugal impeller exit which was clearly observed.

  • PDF

Design Technology and Performance Characteristics of Small Scale Two-Dimensional Centrifugal Compressor (초소형 2차원 원심압축기의 설계 및 성능특성)

  • Cho, Hyung-Hee;Choi, Hang-Cheol;Kim, Kwang-Ho;Chung, Jin Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.405-410
    • /
    • 2004
  • 2-dimensional impeller's distinctive feature is expected to have an influence on performance and flow characteristics of centrifugal compressor. And new design method is required for 2-dimensional impeller, because the unique geometry cannot be designed using conventional theories. The objective of this study is to advance new design technology for 2-dimensional impeller and to investigate the performance characteristics of designed 2-dimensional centrifugal compressor. The performance test for 2-dimensional impeller is conducted at 35000, 40000 and 45000rpm. Also numerical calculation is applied by using commercial CFD code, FLUENT, and the results are compared with experimental results.

  • PDF

Design Optimization of Centrifugal Pump Impeller Using DOE (실험계획법을 사용한 원심펌프 임펠러 최적설계)

  • Kim, Sung;Choi, Young-Seok;Yoon, Joon-Yong;Kim, Deok-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.36-42
    • /
    • 2008
  • In this paper, the performance characteristics of the impeller in a centrifugal pump were investigated using DOE(Design of Experiment) with commercial CFD software. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The incidence angles and the exit blade angle were selected as main parameters using 2k factorial and the influences of selected design parameters were examined through the optimization process using RSM.

Characteristics of centrifugal pump according to the shape of impeller (임펠러 형상에 따른 원심펌프의 특성)

  • Kim, S.Y.;Kim, Y.T.;Nam, C.D.;Lee, Y.H.;Kang, H.K.;Kim, S.D.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.43-44
    • /
    • 2005
  • The effect of break down of centrifugal pump due to entrained air has not been clarified yet. Thus, air-water two-phase flow experimental apparatus was installed to clarify the effect of break down. The performance results of a single-phase flow satisfied reappearance. Also, the heads coincided well impeller types.

  • PDF

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter (스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선)

  • Lee, Jong Sung;Jang, Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1065-1072
    • /
    • 2014
  • The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

Numerical Prediction of Blood Damage in the Clearance Region for a BiVentricular Assist Device (BVAD) (BVAD 틈새 부분에 대한 혈액 손실의 수치적 예측)

  • Sin, D.C.;A., Tan;Jeong, H.E.;Choi, B.K.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.38-43
    • /
    • 2007
  • 전자기적으로 지지되는 임펠러를 가진 원심 혈액 펌프는 기존의 심장 펌프에 비해 많은 장점을 가지고 있지만, BVAD의 틈새에서 발생하는 유체 동역학적인 문제는 여전히 규명이 되지 않은 상태이다. 본 연구에서는 BVAD의 틈새에서 발생하는 혈액외상(blood trauma)의 예측에 대한 연구에 중점을 두고 있다. 일반적으로 원심 혈액 펌프의 설계를 위해 전자기적으로 지지되는 원심 혈액 펌프의 디스크 틈새에서 발생하는 혈액의 손상을 평가하는 방법으로 CFD를 이용한 방법이 널리 이용되고 있다. 따라서, 본 연구에서는 초기 원심 혈액 펌프의 설계 단계에서 펌프의 특성을 평가하기 위하여, 축 방향 틈새의 영향과 회전수 변화에 따른 누수경로의 전단 응력의 크기 평가를 CFD를 사용하여 해석하여 보았다.

  • PDF