• Title/Summary/Keyword: 원심력콘크리트

Search Result 22, Processing Time 0.024 seconds

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Fundamental Study for Extension of Application of Recycled Concrete Aggregate: Spun High Strength Concrete (순환골재의 사용성 확대를 위한 연구: 원심력콘크리트로의 적용)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Hyun-Jung;Kim, Taeg-Wang;Lee, Man-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.103-112
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete, there is use for the structural members. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics recycled concrete aggregate of the spun-concrete products with various coarse and fine recycled aggregate replacement ratio(coarse recycled aggregate: 0%, 20%, 40%, 60%, 100%; fine recycled aggregate: 0%, 30%, 60%, 100%) and with addition of cellulose fibers(0%, 0.01%, 0.03%, 0.05%, 0.08%). From the test results, The strength of spun concrete used with recycled aggregate [NR specimen], was measured as 72MPa, was found to be very approximately to the strength of spun concrete used with the natural aggregate(NN specimen), was measured as 74MPa, when only fine aggregate was replaced with the recycled. Therefore, the fine recycled concrete aggregate can be successfully used in the spun high strength concrete product. The compressive strength of all specimens used the specialty cellulose fiber were measured as about 70M Pa, however, the increasement of the specialty cellulose fiber content is showed to decrease compressive strength of spun concrete. Therefore, it is anticipated that the specialty cellulose fiber can be applied to the various spun concrete products.

  • PDF

A Study on the Engineering Characteristics of High Strength Concrete used by high Calcium Sulfate Cement (고황산염 시멘트를 이용한 고강도콘크리트의 공학적 특성에 관한 연구)

  • 박승범;임창덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.11-18
    • /
    • 1992
  • 프리텐션방식 원심력 고강도콘크리트 말뚝(KS F4306) 콘크리트의 압축강도가 800kg/$\textrm{cm}^2$이상인 고강도콘크리트를 요구하고 있으나 국내에서는 500kg/$\textrm{cm}^2$ 이상의 콘크리트 말뚝제조가 불가한 실정이므로 본 연구에서는 고황산염시멘트를 이용한 고강도콘크리트 말뚝제조에 관한 공학적 특성 연구의 일환으로써 고황산염시멘트의 수화특성 및 고강도 발현기구 구명과 공학적 특성중에서 압축.휨강도의 내동해성, 건조수축 특성 및 화학저항성등을 비교 고찰하여 보통 시멘트보다 품질 특성이 우수함을 확인하였다. 또한 고강도 콘크리트 말뚝의 시제품 제조를 위하여 2개 공장에서 현장 실험한 결과 94.7kg/$\textrm{cm}^2$의 양호한고강도콘크리트를 얻었다. 향후 고강도콘크리트 말뚝 제조의 공업화 및 양산회가 기대된다.

  • PDF

An Experimental Study on the Physical Properties of High Strength Concrete Used by High Calcium Sulfate Cement (고황산염 시멘트를 이용한 고강도 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.135-146
    • /
    • 1992
  • 프리텐션 방식 원심력 고강도콘크리트 말뚝이 KS F4306 규격에 제정되어 콘크리트의 압축강도가 800kg/$ extrm{cm}^2$ 이상의 제조가 불가한 실정이 것으로 평가 된다. 따라서 본 연구에서는 고강도콘크리트 말뚝 제조에 적용하기 위한 고황산염 시멘트의 실험적 연구로써 석고계 첨가량 및 단위 시멘트량 변화가 증가양생 콘크리트의 제 강도 특성에 미치는 영향을 규명하는데 목적이 있다. 연구결과로부터 석고첨가량이 증대하면 콘크리트강도가 향상되지만, 7.5% 이상 첨가시에는 오히려 강도 저하현상이 나타나는 것으로 분석되었으며, 특히 단위 시멘트량 변화에 따른 압축강도 영향은 그다지 크지 않은 것으로 나타났다. 한편 최고 압축강도 발현은 석고첨가량 5~7.5% 첨가와 단위시멘트량 500~540kg/㎥ 조건에서 800kg/$\textrm{cm}^2$ 이상의 고강도 콘크리트 제조가 가능함을 확인하였다.

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

An Experimental Study on the Hydration and Mechanical Properties of High Strength Concrete with High Calcium Sulfate Cement (고황산염시멘트를 이용한 고강도콘크리트의 수화 및 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.129-138
    • /
    • 1993
  • 프리텐션 방식 원심력 고강도 콘크리트 말뚝[KS F 4306]제조에 관한 실험적 연구로써 고황산염시멘트를 이용한 800kg/$ extrm{cm}^2$이상의 고강도콘크리트 제조시 수화 특성검토와 콘크르트 조직내의 기공율과 압축강도간의 상관식을 도출하여 고강도 발현기구를 규명하였으며 콘크리트 압축 및 휨강도간의 상관식 유도와 내구성 측면에서의 내동해성, 건조수축, 화학저항성등을 보통 포틀랜드 시멘트와 비교 고찰한 결과, 고황상염시멘트의 내구성이 우수함을 확인하였다.

A Study on the Mechanism of Recycled Sand Dry Manufacturing System (순환잔골재 건식생산시스템의 메커니즘에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Young-Bong;Na, Chul-Sung;Lee, Eui-Bae;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.481-484
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because waste concrete is greatly increased according to the rapid increasing of urban redevelopment project, but the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate. So the utilization of high quality recycled fine aggregate using construction and demolition waste concrete as new fine aggregate for construction industry is urgently. Accordingly, In this study, As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. And it is to examine mechanism of recycled sand dry manufacturing system.

  • PDF