• Title/Summary/Keyword: 원거리장 와전류검사

Search Result 4, Processing Time 0.019 seconds

Quantitative Evaluation of Remote Field Eddy Current Defect Signals (배관 결함부 원거리장 와전류 신호 정량화 연구)

  • Jeong, Jin-Oh;Yi, Jae-Kyung;Kim, Hyoung-Jean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.555-561
    • /
    • 2000
  • The remote field eddy current (RFEC) inspection was performed on the ductile cast iron pipes with nominal outer diameter of 100mm, which were machined with various shapes and sizes of defects. Ductile cast iron pipes which are used as water supply pipe have the non-uniform thickness and asymmetric cross section due to relatively high degree of allowable errors during the manufacturing processes. These characteristics of ductile cast in pipes cause the long range background noises in RFEC signals along the pipe. In this study, tile machined defects in pipes were effectively classified by the moving window average (MWA) method which eliminated the long-range noise. The voltage plane polar plots (VPPP) method was used to quantitatively evaluate the depth and circumferential degree of defects. The VPPP signatures showed that the angle between defect signature and the normalized in-phase component on the VPPP is linear to the depth of defects. The nondestructive RFEC technique proved to be capable of quantitatively evaluating the machined defects of underground water supply pipe.

  • PDF

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

A FEM Analysis of Remote Field Eddy Current Distribution Characteristics to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자제분포 특성해석(I))

  • Huh, Hyung;Chung, Hyun-Kyu;Kim, Kern-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5 percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field phenomena. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines (가스 파이프라인 상의 압력 부식에 의한 흠집 검사를 위한 원격 와전류 탐상 기술)

  • Kim, Dae-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • Magnetic flux leakage (MFL) pigs are traditionally used for the detection of gross corrosion on steel pipelines used for the transmission of natural gas. Alternative nondestructive evaluation (NDE) modalities are required for the detection of stress corrosion cracking (SCC) which tends to exist in colonies oriented axially along the length of the pipeline. This paper describes the use of multiphase rotating magnetic fields in the remote region of the probe as a possible SCC detection mechanism. Details of a prototype pig and test rig are given and the challenges associated with the finite element modeling of the device are discussed. Initial experimental results show that this novel NDE modality is sensitive to axially oriented tight cracks.