• Title/Summary/Keyword: 워크플로우 빅-로그

Search Result 1, Processing Time 0.012 seconds

A MapReduce-Based Workflow BIG-Log Clustering Technique (맵리듀스기반 워크플로우 빅-로그 클러스터링 기법)

  • Jin, Min-Hyuck;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • In this paper, we propose a MapReduce-supported clustering technique for collecting and classifying distributed workflow enactment event logs as a preprocessing tool. Especially, we would call the distributed workflow enactment event logs as Workflow BIG-Logs, because they are satisfied with as well as well-fitted to the 5V properties of BIG-Data like Volume, Velocity, Variety, Veracity and Value. The clustering technique we develop in this paper is intentionally devised for the preprocessing phase of a specific workflow process mining and analysis algorithm based upon the workflow BIG-Logs. In other words, It uses the Map-Reduce framework as a Workflow BIG-Logs processing platform, it supports the IEEE XES standard data format, and it is eventually dedicated for the preprocessing phase of the ${\rho}$-Algorithm that is a typical workflow process mining algorithm based on the structured information control nets. More precisely, The Workflow BIG-Logs can be classified into two types: of activity-based clustering patterns and performer-based clustering patterns, and we try to implement an activity-based clustering pattern algorithm based upon the Map-Reduce framework. Finally, we try to verify the proposed clustering technique by carrying out an experimental study on the workflow enactment event log dataset released by the BPI Challenges.