The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.4
/
pp.77-82
/
2024
Recent advancements in artificial intelligence (AI) technology have led to an increase in the implementation of AI applications in mobile environments. However, due to the limited resources in mobile devices compared to desktops and servers, there is growing interest in research aimed at efficiently executing AI workloads on mobile platforms. While most studies focus on offloading to edge or cloud solutions to mitigate computing resource constraints, research on the characteristics of file I/O related to storage access in mobile settings remains underexplored. This paper analyzes file I/O traces generated during the execution of deep learning applications in mobile environments and investigates how they differ from traditional mobile workloads. We anticipate that the findings of this study will be utilized to design future smartphone system software more efficiently, considering the file access characteristics of deep learning.
Database logs contain various information on database operations, but they are used to recover database systems from failures generally. This paper proposes a log analysis tool that provides useful information for database tuning. This tool provides users with information on work-load organization, database schemas, and resources usages of queries. This paper describes the tool in views of its architecture, functions, implementation, and verification. The tool is verified by running the TPC-W benchmark, and representative analysis results are also presented.
Many studies have utilized GPGPU (General-Purpose Graphic Processing Unit) and its high computing power to compute complex tasks. The characteristics of GPGPU programs necessitate the operations of memory copy between the host and device. A high latency period can affect the performance of the program. Thus, it is required to significantly improve the performance of GPGPU programs by optimizations. By executing multiple GPGPU programs simultaneously, the latency hiding effect of memory copy is achieved by overlapping the memory copy and computing operations in GPGPU. This paper presents the results of analyzing the latency hiding effect for memory copy operations. Furthermore, we propose a performance anticipation model and an algorithm for the limitations of using pinned memory, and show that the use of the proposed algorithm results in a 41% performance increase.
Application loading speed can be improved by timely prefetching disk blocks likely to be needed by an application. However, existing prefetchers -- if they are not specialized to a particular application -- incur high overheads and are poor at identifying the blocks that will actually be required. There are many sequences in which blocks may be needed and, even if two access sequences are identical, block tracing and access timings can be affected significantly by the state of the buffer cache. We propose a new application-independent software-based prefetching technique, in which breakpoints are inserted at appropriate places in an application to collect the information on correlations between the blocks and to prefetch the potential blocks ahead of their schedule based on it. Experiments on an HDD-based desktop PC demonstrated an average 30% reduction in application launch time and 15% in general I/O, while reducing the wasted overhead.
PIM은 CPU와 메모리 간의 데이터 버스 오버헤드를 완화하기 위해서 메모리 내부에 프로세서를 가지며 낮은 데이터 재사용성을 가지는 데이터 집약형 워크로드에서 지연과 에너지 관점에서 장점을 가진다. 본 논문은 UPMEM사의 PIM을 이용하여 HPC분야에서 자주 사용되는 행렬 연산인 GEMV, SpMV의 벤치마크 구현을 분석하고 성능 분석을 통해 CPU 대비 가지는 장단점에 대해서 논하였다.
KIPS Transactions on Software and Data Engineering
/
v.2
no.2
/
pp.123-130
/
2013
As size of genomic data is increasing rapidly, the needs for high-performance computing system to process and store genomic data is also increasing. In this paper, we captured I/O trace of a system which analyzed 500 million sequence reads data in Genome analysis pipeline for 86 hours. The workload created 630 file with size of 1031.7 Gbyte and deleted 535 file with size of 91.4 GByte. What is interesting in this workload is that 80% of all accesses are from only two files among 654 files in the system. Size of read and write request in the workload was larger than 512 KByte and 1 Mbyte, respectively. Majority of read write operations show random and sequential patterns, respectively. Throughput and bandwidth observed in each processing phase was different from each other.
ArangoDB is a NoSQL database system that has been popularly utilized in many applications for storing large amounts of data. In order to apply a new NoSQL database system such as ArangoDB, to real work environments we need a benchmarking system that can evaluate its performance. In this paper, we design and implement a ArangoDB based benchmarking system that measures a kernel level performance well as an application level performance. We partially modify YCSB to measure the performance of a NoSQL database system in the cluster environment. We also define three real-world workload types by analyzing the existing materials. We prove the feasibility of the proposed system through the benchmarking of three workload types. We derive available workloads in ArangoDB and show that performance at the kernel layer as well as the application layer can be visualized through benchmarking of three workload types. It is expected that applicability and risk reviews will be possible through benchmarking of this system in environments that need to transfer data from the existing database engine to ArangoDB.
단일 가상화 서비스 플랫폼은 메모리 및 컴퓨팅 집약적 워크로드를 수행하기 위한 고성능 시스템 환경의 신속한 구축을 지원하는 클라우드 기반의 소프트웨어 정의 서버를 위한 핵심 기술이다. 본 연구는 다수의 물리 노드를 통합하여 하나의 고성능 단일가상서버로 구성하기 위해 개발된 HCC 단일 가상화 서비스 플랫폼에서 대용량 데이터 처리 및 대규모 연산이 필요한 NGS 기반 농생명유전체 조립 프로그램과 이상 기상의 탐지 분석을 위한 GOES 위성자료 전처리 프로그램을 시험하여 활용 적합성을 검증하였다.
In 2012, According to 'Cisco Global Cloud Index 2011-2016', the Cisco company forecasted that global data center traffic will nearly quadruple and cloud traffic will nearly sextuple by 2016. Such a rapid growing of traffic is caused by traffic inside the data center and cloud computing workloads. In 2010, the Ministry of National Defense decided to build a Mega Center including the cloud computing technology by 2014, as part of the '2012 Information Service Plan', which is now underway. One of the factors to consider is cloud computing traffic to build a Mega Center. Since the K-defense cloud computing system is built, K-defense cloud computing traffic will increase steadily. This paper, analyzed the availability of K-defense cloud computing service with the K-defense cloud computing traffic increasing using K-Defense cloud computing test system and CloudAnalyst simulation tool. Created 3 scenarios and Simulated with these scenarios, the results are derived that the availability of K-defense cloud computing test system is fulfilled, even cloud workloads are increased as muh as forecasted cloud traffic growth from now until 2016.
Journal of the Korea Society of Computer and Information
/
v.28
no.8
/
pp.1-10
/
2023
Recently, NAND flash memories have replaced magnetic disks due to non-volatility, high capacity and high resistance, in various computer systems but it has disadvantages which are the limited lifespan and imbalanced operation latency. Therefore, many page replacement policies have been studied to overcome the disadvantages of NAND flash memories. Although it is clear that these policies reflect execution characteristics of various environments and applications, researches on the foundation-policy decision for disk buffer management are insufficient. Thus, in this paper, we propose a foundation-policy recommendation model, called FRM for effectively utilizing NAND flash memories. FRM proposes a suitable page replacement policy by classifying and analyzing characteristics of workloads through machine learning. As an implementation case, we introduce FRM with a disk buffer management policy and in experiment results, prediction accuracy and weighted average of FRM shows 92.85% and 88.97%, by training dataset and validation dataset for foundation disk buffer management policy, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.