DBMS is used for a range of applications from data warehousing through on-line transaction processing. As a result of this demand, DBMS has continued to grow in terms of its size. This growth invokes the most important issue of manually tuning the performance of DBMS. The DBMS tuning should be adaptive to the type of the workload put upon it. But, identifying workloads in mixed database applications might be quite difficult. Therefore, a method is necessary for identifying workloads in the mixed database environment. In this paper, we propose a SVM workload classifier to automatically identify a DBMS workload. Database workloads are collected in TPC-C and TPC-W benchmark while changing the resource parameters. Parameters for SVM workload classifier, C and kernel parameter, were chosen experimentally. The experiments revealed that the accuracy of the proposed SVM workload classifier is about 9% higher than that of Decision tree, Naive Bayes, Multilayer perceptron and K-NN classifier.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.70-72
/
2005
데이터베이스 관리자는 효과적인 데이터베이스 관리를 위해 워크로드 특성을 잘 알아야 한다. 워크로드 특성은 데이터베이스 응용분야에 따라 다르며, 데이터베이스 환경에서 하나 이상의 응용 분야가 수행될 수 있다. 복합적인 데이터베이스 응용 분야 때문에, 관리자가 데이터베이스 시스템에서 발생하는 워크로드를 식별하기가 더욱 어려워졌다. 복합적인 데이터베이스 응용 분야의 효과적인 데이터베이스 관리를 수행하기 위해 워크로드를 식별할 수 있는 방법이 요구된다. 이를 위해, 본 연구는 TPC-C와 TPC-W 성능평가의 워크로드와 두 성능평가의 혼합된 워크로드들을 생성하여 워크로드 식별을 수행하였다. 워크로드 식별은 퍼지 k-NN 알고리즘을 수정하여 진행하였다. 수정된 k-NN 알고리즘은 혼합 비율에 따라 시험 워크로드 데이터와 훈련 워크로드 데이터간의 워크로드 식별 실험에 사용되었고, 분류를 위한 k-NN, 퍼지 k-NN, 분산 가중치 퍼지 k-NN 알고리즘의 결과와 비교되었다. 수정된 k-NN 알고리즘은 다른 알고리즘보다 k 인자에 따른 변동과 오차율이 감소하여 워크로드 식별에 더 적합함을 보였다. 본 논문의 결과는 복합된 데이터베이스 응용 분야의 특성을 보이는 데이터베이스 환경에서 워크로드 식별 정보를 창조하여 융통성 있는 튜닝 기법을 고려하는데 기여한다.
Park, Yunjoo;Shin, Donghee;Cho, Kyungwoon;Bahn, Hyokyung
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.1
/
pp.111-116
/
2019
Recently, GPU expands application domains from graphic processing to various kinds of parallel workloads. However, current GPU systems focus on the maximization of each workload's parallelism through simplified control rather than considering various workload characteristics. This paper classifies the resource usage characteristics of GPU workloads into computing-bound, memory-bound, and dependency-latency-bound, and quantifies the fine-grained bottleneck for efficient workload allocation. For example, we identify the exact bottleneck resources such as single function unit, double function unit, or special function unit even for the same computing-bound workloads. Our analysis implies that workloads can be allocated together if fine-grained bottleneck resources are different even for the same computing-bound workloads, which can eventually contribute to efficient workload allocation in GPU.
클라우드 컴퓨팅 시장의 지속적 성장과 가상화의 인기로 세계적 VDI 시장은 꾸준한 성장률을 보이고 있다. 또한 의료, 교육, 금융 등의 폭넓은 분야에서 VDI 서비스가 활용될 전망이다. 하지만 기존 VDI 서비스는 고정적인 자원 할당으로 사용자 워크로드 맞춤형 자원이 제공되지 못하는 문제점이 있다. 따라서 본 논문에서는 기존 VDI에 비해 실행속도가 빠른 컨테이너의 장점을 살려 VDI를 컨테이너화 하고, 사용자 워크로드 맞춤형으로 자원을 분배하기 위해 VDI 컨테이너 자원 사용량 데이터로 K-means 알고리즘을 통한 군집 분석 기반의 워크로드 분류 방법을 제시하였다.
KIPS Transactions on Computer and Communication Systems
/
v.8
no.10
/
pp.245-250
/
2019
The use of NAND flash memory has increased rapidly due to the development of mobile fields. However, NAND flash memory has a limited lifespan, so studies are underway to predict its lifespan. Workload is one of the factors that significantly affect the life of NAND flash memory, and workload analysis studies in mobile environments are insufficient. In this paper, we analyze the distribution of workload in the mobile environment by collecting traces generated by using Android-based smartphones. The collected traces can be divided into three groups of hotness. Also they are distributed in the form of heavy tails. We fit this to the Pareto, Lognormal, and Weibull distributions, and Traces are closest to the Pareto distribution.
최근 중앙 집중화된 대규모 클라우드 시스템의 증가로 인해 가상화 환경에서 수행되는 성능 최적화 작업에 대한 많은 연구가 진행되고 있다. 그러나 기존 연구에서는 자원 분배의 공정성을 위해 가상머신 단위로 컴퓨팅 자원을 격리한 정책 내에서 이루어지고 있어 유연한 자원관리에 한계를 가지고 있다. 본 연구에서는 워크로드의 특징을 기반으로 과학적 연산을 수행하는 가상머신과 일반적인 서비스를 수행하는 가상머신을 분류하여 성능 최적화 작업을 수행하는 동적 자원 관리자를 제안한다. 실험을 통하여 제안하는 동적 자원 관리자가 KVM 기본 스케줄링에 비해 49%의 성능 향상을 보였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.5
/
pp.49-54
/
2022
With the recent widespread adoption of general-purpose GPUs (GPGPUs) in cloud systems, maximizing the resource utilization through multitasking in GPGPU has become an important issue. In this article, we show that resource allocation based on the workload classification of computing-bound and memory-bound is not sufficient with respect to resource utilization, and present a new thread block scheduling policy for GPGPU that makes use of fine-grained resource utilizations of each workload. Unlike previous approaches, the proposed policy reduces scheduling overhead by separating profiling and scheduling, and maximizes resource utilizations by co-locating workloads with different bottleneck resources. Through simulations under various virtual machine scenarios, we show that the proposed policy improves the GPGPU throughput by 130.6% on average and up to 161.4%.
최근 낸드 플래시 메모리 기반의 Solid State Drive(SSD)가 기존 Hard Disk Drive(HDD)를 대신하여 개인용과 산업용으로도 널리 쓰이고 있다. 핫 데이터 구분 기법은 이러한 SSD 의 성능과 수명에 중요한 역할을 하는 Garbage Collection(GC)과 Wear Leveling(WL) 기술의 기반이 된다. 본 논문에서는 핫 데이터를 예측하기 위한 나이브 베이즈 분류 기반의 새로운 핫 데이터 구분 기법을 제안한다. 제안 기법은 워크로드 액세스 패턴의 학습 단계인 초기 단계와 실제 운영 단계를 통해 다시 액세스 될 확률이 높은 데이터를 그렇지 않은 데이터와 효과적으로 구분한다. 다양한 실제 trace 기반 실험을 통해 본 제안 기법이 기존 대표적인 기법보다 평균 19.3% 높은 성능을 확인했다.
플래시 메모리(Flash Memory) 기술이 빠르게 발전하면서, 플래시 메모리 기반의 저장 장치가 개인용 컴퓨터나 엔터프라이즈 서버 시스템과 같은 시스템에 2차적인 저장 장치로써 사용가능해지고 있다. FTL(Flash Translation Layer)의 기본적인 기능은 플래시 메모리의 논리 주소를 물리 주소로 바꾸는 것임에도 불구하고, FTL의 효율적인 알고리즘은 성능과 수명에 상당한 효과를 가지고 있다. 이 논문에서는 MP3 플레이어와 디지털 카메라, SSDs(Solid-State Disk)와 같은 낸드 플래시 메모리(NAND Flash Memory) 기반의 어플리케이션을 위한 N : N+K 매핑을 사용하는 새로운 FTL 설계를 제안한다. 성능에 영향을 미치는 매개변수들을 분류하여, 다양한 워크로드 분석을 기반으로 FTL을 조사했다. 우리가 제안하는 FTL을 가지고, 낸드 플래시 어플리케이션 가동에 따라 어떤 매개변수가 최대 성능을 낼 수 있는지 알아낼 수 있고, 그 변수들을 유연하게 조정하여 성능을 더 향상시킬 수 있다.
Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.