• 제목/요약/키워드: 움직임 영역 검출

검색결과 161건 처리시간 0.032초

흡연자 검출을 위한 새로운 방법 (New Scheme for Smoker Detection)

  • 이종석;이현재;이동규;오승준
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1120-1131
    • /
    • 2016
  • 본 논문은 흡연으로 인한 화재사고 방지를 위해, 비디오 영상에서 흡연자를 검출하는 알고리즘을 제안한다. 흡연자의 행동을 인식하기 위해 행동 인식 기법의 계층적 방법 중 서술 기반 접근 방법을 기반으로 제안하는 알고리즘은 배경 영역 분리, 객체 검출, 이벤트 탐지, 이벤트 판단 과정으로 구성된다. 배경 영역 분리 과정으로 학습률이 다른 두 개의 가우시안 혼합 모델을 이용하여 입력 영상으로부터 고속 움직임 전경, 저속 움직임 전경 영상을 생성하고, 저속움직임 전경 영상을 chain-rule 기반 외곽선 검출 알고리즘을 통하여 객체의 위치를 추출해낸다. 위치 정보를 기반으로 흡연자의 세 가지 특징인 얼굴, 연기, 손의 움직임을 이벤트 탐지 과정에서 검출한다. Haar-like feature를 이용하여 얼굴을 검출하며, 고속 움직임 전경에서 연기의 발생 빈도수와 방향성을 반영하여 연기를 검출한다. 움직임 추정을 통해 반복적인 손의 움직임을 검출한다. 일정 구간의 비디오 시퀀스 내 객체들에 대하여, 검출된 특징들의 서술적 관계를 반영하여 각각의 객체가 흡연자인지 판단한다. 제안하는 방법은 실시간으로 여러 다른 객체들 사이에서 강인하게 흡연자를 검출한다.

MPEG 영상에서의 점진적 장면전환에 대한 효과적인 검출 기법 (Effective Detection Techniques for Gradual Scene Changes on MPEG Video)

  • 윤석중;지은석;김영로;고성제
    • 한국통신학회논문지
    • /
    • 제24권8B호
    • /
    • pp.1577-1585
    • /
    • 1999
  • 점진적인 장면전환 종류로는 비디오 편집 과정에서 삽입되는 디졸브(dissolve), 페이드인/아웃(fade-in/out), 와이프(wipe) 등과, 카메라 움직임에 의한 팬(pan), 줌(zoom), 스크롤(scroll) 등이 있다. 본 논문에서는 점진적 장면전환 종류 중 편집과정에서 사용되는 디졸브, 그리고 카메라 움직임에 의한 팬과 줌의 검출을 위한 효과적인 방법을 제안하였다. 디졸브 구간의 검출을 위하여 각 프레임에 대한 공간적 영역 분할을 하고, 영역별 화소값의 평균치를 제곱하여 전환 프레임의 특징 요소로 사용하였다. 팬과 줌의 검출을 위하여 배경화면을 대표할 수 있는 4개의 국부 영역으로 선정하여 각 국부 영역의 움직임 벡터로부터 대표 움직임 벡터를 결정하고, 이들의 방향 성분을 사용하였다. 제안된 방식들은 검출의 정확도를 향상시키기 위해 모든 프레임(I, P, B)을 사용하였으며 아울러 검출 속도를 높이기 위해 완전 복원된 영상을 사용하는 대신 DCT DC 계수와 움직임 벡터를 이용한 축소영상을 사용하였다. 실제 MPEG 비디오에 적용하여 기존의 방법들에 비해 우수한 검출 결과를 확인하였다.

  • PDF

다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원 (Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.563-570
    • /
    • 2002
  • 본 논문은 MPEG4 SNHC의 얼굴 모델 인코딩을 구현하기 위하여 연속된 2차원 영상으로부터 얼굴영역을 검출하고, 얼굴의 특징데이터들을 추출한 후, 얼굴의 3차원 모양 및 움직임 정보를 복원하는 알고리즘과 결과를 제시한다. 얼굴 영역 검출을 위해서 영상의 거리, 피부색상, 움직임 색상정보등을 융합시킨 멀티모달합성의 방법이 사용되었다. 결정된 얼굴영역에서는 MPEG4의 FDP(Face Definition Parameter) 에서 제시된 특징점 위치중 23개의 주요 얼굴 특징점을 추출하며 추출성능을 향상시키기 위하여 GSCD(Generalized Skin Color Distribution), BWCD(Black and White Color Distribution)등의 움직임색상 변환기법과 형태연산 방법이 제시되었다. 추출된 2차원 얼팔 특징점들로부터 얼굴의 3차원 모양, 움직임 정보를 복원하기 위하여 준원근 카메라 모델을 적용하여 SVD(Singular Value Decomposition)에 의한 인수분해연산을 수행하였다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 복원된 얼굴의 움직임 정보는 MPEG4 FAP(Face Animation Parameter)로 변환된 후, 인터넷상에서 확인이 가능한 가상얼굴모델에 인코딩되어 실제 얼굴파 일치하는 모습을 확인하였다.

입술 움직임 정보를 이용한 실시간 화자 클로즈업 시스템 구현 (Real Time Speaker Close-Up System using The Lip Motion Informations)

  • 권혁봉;장언동;윤태승;안재형
    • 한국멀티미디어학회논문지
    • /
    • 제4권6호
    • /
    • pp.510-517
    • /
    • 2001
  • 본 논문에서는 다수의 사람이 존재하는 입력영상에서 입술 움직임 정보를 이용한 실시간 화자 클로즈업(close-up) 시스템을 구현한다. 칼라 CCD 카메라를 통해 입력되는 동영상에서 화자를 검출한 후 입술 움직임 정보를 이용하여 다른 한 대의 카메라로 화자를 클로즈업한다. 구현된 시스템은 얼굴색 정보와 형태 정보를 이용하여 각 사람의 얼굴 및 입술 영역을 검출한 후, 입술 영역 변화량을 이용하여 화자를 검출한다. 검출된 화자를 클로즈업하기 위하여 PTZ(Pan/Tilt/Zoom) 카메라를 사용하였으며, RS-232C 시리얼 포트를 이용하여 카메라를 제어한다. 실험결과 3인 이상의 입력 동영상에서 정확하게 화자를 검출할 수 있다.

  • PDF

배경 모델과 주변 영역과의 상호관계를 이용한 다중 이동 물체 추적 (Multiple Moving Object Tracking Using The Background Model and Neighbor Region Relation)

  • 오정원;유지상
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.361-369
    • /
    • 2002
  • 제한된 구역내의 고정(static)된 감시 카메라를 통해 입력된 영상 데이터에 대해 움직임이 있는 물체를 검출하기 위해서는 주위 잡음(noise)에 대한 민감성(sensitivity)과 상황변화에 대해 대처할 수 있는 강인한 알고리즘이 요구된다. 본 논문에서는 이러한 잡음이나 갑작스런 상황의 변화에 적절히 대응하여 움직임 물체를 추출하고 추적하는 효율적인 알고리즘을 제안한다. 초기 배경 모델(background model) 영상에 의해서 입력되는 영상 내에 이동 물체가 존재할 경우 각 화소의 주변의 변화를 고려하여 움직임 영역을 검출하였다. 움직임 영역의 화소들의 잡음 제거를 위해 형태학적 필터(morphological filter)를 사용하였고, 8-연결 성분 표시(connected component labeling)에 의해 개별적인 물체의 움직임을 검출하였다. 마지막으로 다양한 환경과 모델에 따른 실험결과와 통계적인 분석을 제시하였다.

HCr과 적응적 임계화에 의한 고속 얼굴 검출 (Fast Face Detection in Video Using The HCr and Adaptive Thresholding Method)

  • 신승주;최석림
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.61-71
    • /
    • 2004
  • 얼굴검출을 위한 다양한 연구가 행해지고 있으나 아직도 실시간성의 확보는 미진하다. 이에 본 연구는 연속영상에서 컬러와 움직임 정보를 이용한 실시간 얼굴검출 방법을 제안한다. 피부색 검출을 위한 컬러공간은 조명의 변화에 강인하고 피부색을 좁은 영역으로 정의할 수 있는 Hue와 Cr성분을 조합하여 재구성한 HCr을 사용한다. 배경참조영상 기반에서 밝기와 Cr 성분을 함께 사용하여 획득한 움직임 영역에서, HCr과 적응적 임계값을 이용해서 피부색 영역을 검출하고, 그 검출된 영역의 모양과 크기정보를 통해 얼굴 후보영역을 구한다. 이렇게 구해진 얼굴후보영역에서 G와 B성분의 차이, 밝기, Cr성분 값과 눈과 입의 위치 및 거리관계를 이용하여 눈과 입을 검출하여 얼굴을 확정한다. 실험결과 연속영상에서 실시간으로 얼굴을 검출 할 수 있었다.

동영상에서 칼만 예측기와 블록 차영상을 이용한 얼굴영역 검출기법 (A New Face Tracking Method Using Block Difference Image and Kalman Filter in Moving Picture)

  • 장희준;고혜선;최영우;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.163-172
    • /
    • 2005
  • 복잡한 환경에서 이동하는 사람의 얼굴영역은 배경과 조명에 의해 확장, 축소 검출되기도 하고 잘못된 영역을 오검출하기도 한다. 본 논문에서는 동영상에서 얼굴을 추적하는데 있어서 확장 혹은 축소검출이나 오검출 문제를 해결하기 위해 블록차 영상과 칼만예측기를 사용하는 방법을 제안한다. 블록차영상은 입력영상을 블록화하여 차영상을 얻는 방법으로 미세한 움직임까지 검출이 가능하여 영상에서 움직임이 작은 경우에도 검출이 가능하게 된다. 검출된 움직임영역에서 얼굴영역은 1차적으로 피부색을 이용하여 검출하며 피부색이 검출되지 않은 경우는 움직임 영역의 경계선을 8이웃화소 창을 이용하여 부호화하고 머리부분의 코드를 갖는 영역을 얼굴영역으로 추정하는 방법을 사용한다. 추정된 얼굴영역을 컬러분할하고 분활된 영역에서 피부색과 가장 가까운 색을 갖는 영역을 얼굴영역으로 판단한다. 얼굴영역은 최외각화소를 포함하는 4각형으로 표시하소 각 정점의 이동을 칼만예측기를 이용하여 추정하고 추정된 위치에서 얼굴영역을 검출하는 방법을 사용한다. 제안하는 방법은 동영상에서 얼굴영역검출의 정확도를 높이고 얼굴영역의 추적에서 얼굴영역검출에 소요되는 시간을 상당부분 감소시키는 효과를 고두게 됨을 실험을 통해 입증하였다.

서베일런스에서 피셔의 선형 판별 분석을 이용한 사람 검출의 성능 향상 (Improve the Performance of People Detection using Fisher Linear Discriminant Analysis in Surveillance)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제11권12호
    • /
    • pp.295-302
    • /
    • 2013
  • 사람 검출은 정지된 영상 혹은 동영상으로부터 사람의 움직임이나 자세를 추정하고, 사람이 찾아질 경우 영상 내 사람의 좌표, 동작 인식, 보안관련 인증 등을 알아내는 기술로 정의된다. 이러한 사람 검출은 다른 객체의 검출이나 사람과 컴퓨터와의 상호작용, 동작 인식 등의 기초 기술로서 해당 시스템의 성능에 영향을 미치는 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 사람은 움직임, 자세, 크기, 빛의 방향 및 밝기, 다른 객체와의 중복 등의 환경적 변화로 인해 사람 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 피셔의 선형 판별 분석을 이용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 사람 검출 방법을 제안한다. 제안된 방법은 사람 움직임 및 자세와 배경에 무관하게 빠른 시간 안에 사람을 검출하는 것이 가능하다. 이를 위해 계층적인 방법으로 사람 검출을 수행하며, 휴리스틱한 방법, 피셔의 판별 분석을 이용하여 사람 검출을 수행하고, 검색 영역의 축소와 선형 결정의 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 추출된 사람 영상에서 사람의 자세를 추정하고 사람의 영역을 검출함으로써 사람 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다.

움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환 (Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation)

  • 권병헌;서범석
    • 디지털콘텐츠학회 논문지
    • /
    • 제6권3호
    • /
    • pp.157-162
    • /
    • 2005
  • 본 논문에서는 2차원 정지 영상 및 동영상에서 블록 정합을 이용한 움직임 검출과 영역 분할을 통하여 생성한 깊이 지도를 이용하여 입체 영상으로 실시간 변환하는 방법을 제안하였다. 성능 평가는 움직임 객체의 깊이 지도와 절대 시차 차이 영상을 생성하여 기존의 변환 방법과 비교를 통해 제안한 방식의 우수성을 입증하였다.

  • PDF

스테레오 동영상에서의 좌우 영상 바뀜 검출 기법 (Detection of View Reversal in a Stereo Video)

  • 손지덕;송병철
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.191-198
    • /
    • 2013
  • 본 논문은 스테레오 동영상에서 깊이 정보와 움직임 정보를 이용하여 좌영상과 우영상이 바뀐 것을 검출하는 기법을 제안한다. 스테레오 정합 기법을 통해 깊이 정보를 얻어 영상을 전경과 배경 영역으로 나누고 움직임 추정 기법을 이용해 움직임 벡터를 얻는다. 제안 기법은 전경이 인접한 배경 쪽으로 움직이거나 배경이 인접한 전경 쪽으로 움직였을 때 가려짐이 발생하는 영역이 배경이라는 것을 이용한다. 그러나 좌영상과 우영상이 바뀐 경우에는 깊이 정보가 반대로 얻어져 전경과 배경 영역도 반대로 얻어지므로 위와 같은 움직임이 있을 경우에 가려짐이 발생하는 영역은 전경이다. 따라서 좌영상과 우영상이 바뀐 것을 검출할 수 있다. 모의실험을 통해 제안 기법이 전경에 의해 배경 영역이 충분히 가려지는 경우 높은 검출률을 보임을 알 수 있다.