This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.
In this paper, we suggest a method to acquire the moving object centered video by panning and tilting a camera automatically according to motion vectors calculated by detecting the motion of a moving object on video steam. We create a difference image by estimating the intensity difference at the grid points of neighboring frames. And we detect the motion using both horizontal projection histogram and vertical projection histogram and decide the center of motion part. Then we calculate a new direction and degree of the motion by comparing coordinates at the center of current motion and the center of previous motion. By controling the RCM using these Motion vectors, we can get video stream positioned unwire object on the center of video frame. Through the experiments, we could get a moving object centered video stream continuously arid monitor remotely by implementing sever/client architecture based on the web.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.05a
/
pp.111-112
/
2017
최근 중소 테마파크들은 방문객의 감소로 인한 운영의 어려움을 겪고 있다. 새로운 어트랙션의 도입 및 테마파크의 리뉴얼을 통해 방문객 증가를 유도하기에는 천문학적인 비용이 소요된다. 이런 비용 소모는 운영 업체의 입장에서 부담하기 쉽지 않은 구조로 새로운 방법으로 방문객의 재방문률을 높일 수 있는 방안이 필요하다. 대표적인 방안으로 최근 높은 관심으로 인해 관련 기술 및 연구가 활발히 진행되고 있는 VR 시스템의 어트랙션 적용이 있다. 많은 움직임이 없고 안정적인 속도로 운영되는 어트랙션에 VR의 콘텐츠를 적용하여 사용자의 탑승률을 높이고 이로 인해 재방문률 또한 증가 시킬 수 있을 것으로 사료되어 많은 접근이 시도되고 있다. 이 논문에서는 어트랙션의 탑승자에게 몰입감 높은 VR 콘텐츠 제공을 위해 탑승한 어트랙션의 움직임과 VR영상을 동기화 하는 매칭 모듈에 대해 제안한다. 제안하는 모듈은 가속도 센서의 움직임에 따라 1차 적분하여 속도를 산출하고 이를 2차 적분하여 거리를 산출한다. 기존의 가속도 센서를 통한 이동거리 판단에는 칼만 필터를 적용한 오차 보정, 다분화 사다리꼴 적분 등의 연산이 필요하지만 본 논문의 고정 어트랙션에서는 탑승체의 방향이 결정되어 있어 최소화된 연산으로 정확한 이동거리를 판단할 수 있을 것으로 사료된다.
Kim, Hanj-Jun;Lee, Young-Hyun;Song, Tae-Yup;Ku, Bon-Hwa;Ko, Han-Seok
Journal of the Korea Society of Computer and Information
/
v.16
no.4
/
pp.73-81
/
2011
In this paper, an improved block-based background modeling technique using adaptive parameter estimation that judiciously adjusts the number of model histograms at each frame sequence is proposed. The conventional block-based background modeling method has a fixed number of background model histograms, resulting to false negatives when the image sequence has either rapid illumination changes or swiftly moving objects, and to false positives with motionless objects. In addition, the number of optimal model histogram that changes each type of input image must have found manually. We demonstrate the proposed method is promising through representative performance evaluations including the background modeling in an elevator environment that may have situations with rapid illumination changes, moving objects, and motionless objects.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.3
/
pp.129-136
/
2020
In this paper, we propose a thermal imagery-based object detection algorithm for low-light level nighttime surveillance system. Many features selected by Haar-like feature selection algorithm and existing Adaboost algorithm are often vulnerable to noise and problems with similar or overlapping feature set for learning samples. It also removes noise from the feature set from the surveillance image of the low-light night environment, and implements it using the lightweight extended Haar feature and adaboost learning algorithm to enable fast and efficient real-time feature selection. Experiments use extended Haar feature points to recognize non-predictive objects with motion in nighttime low-light environments. The Adaboost learning algorithm with video frame 800*600 thermal image as input is implemented with CUDA 9.0 platform for simulation. As a result, the results of object detection confirmed that the success rate was about 90% or more, and the processing speed was about 30% faster than the computational results obtained through histogram equalization operations in general images.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.2
/
pp.209-214
/
2018
The subway, which is an urban railway, is the core of public transportation. Urban railways are always exposed to serious problems such as theft, crime and terrorism, as many passengers use them. Especially, due to the nature of urban railway environment, the scope of surveillance is widely dispersed and the range of surveillance target is rapidly increasing. Therefore, it is difficult to perform comprehensive management by passive surveillance like existing CCTV. In this paper, we propose the implementation, design method and object recognition algorithm for intelligent object recognition system in urban railway. The object recognition system that we propose is to analyze the camera images in the history and to recognize the situations where there are objects in the landing area and the waiting area that are not moving for more than a certain time. The proposed algorithm proved its effectiveness by showing detection rate of 100% for Selected area detection, 82% for detection in neglected object, and 94% for motionless object detection, compared with 84.62% object recognition rate using existing Kalman filter.
밀집된 돈방에서 사육되는 돼지의 공격적인 행동들은 돼지의 성장에 심각한 악영향을 주고, 이는 농가의 경제적 손실로 이어진다. 따라서 돈방 내의 비정상 상황들을 지속적으로 모니터링할 수 있는 IT기반의 영상 감시 시스템이 요구된다. 본 논문에서는 돼지의 행동 분석 이전에 필수적으로 선행되어야 하는 개별 돼지의 탐지를 위한 키넥트 카메라 기반의 새로운 모니터링 시스템을 제안한다. 먼저, 배경차영상 기법과 깊이 임계값을 이용하여 서있는 돼지만을 탐지한다. 둘째, 서있는 돼지들 중에서 움직임이 있는 돼지만을 관심영역으로 설정하여 탐지한다. 마지막으로, 서서 움직이는 돼지들 사이에서 발생하는 근접 문제를 깊이 정보를 이용한 등고선기법을 제안 적용하여 돼지 객체의 탐지를 완성한다. 실제 세종에 위치한 한 돈사에서 취득한 깊이 영상 정보를 이용하여 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증하였다.
Park, Sue-Kyeong;Ahn, Chang-Beom;Sim, Dong-Gyu;Park, Ho-Chong
Investigative Magnetic Resonance Imaging
/
v.12
no.2
/
pp.123-130
/
2008
Purpose : Motion effects in parallel magnetic resonance imaging (MRI) are investigated. Parallel MRI is known to be robust to motion due to its reduced acquisition time. However, if there are some involuntary motions such as heart or respiratory motions involved during the acquisition of the parallel MRI, motion artifacts would be even worse than those in conventional (non-parallel) MRI. In this paper, we defined several types of motions, and their effects in parallel MRI are investigated in comparisons with conventional MRI. Materials and Methods : In order to investigate motion effects in parallel MRI, 5 types of motions are considered. Type-1 and 2 are periodic motions with different amplitudes and periods. Type-3 and 4 are segment-based linear motions, where they are stationary during the segment. Type-5 is a uniform random motion. For the simulation, Cartesian and spiral grid based parallel and non-parallel (conventional) MRI are used. Results : Based on the motions defined, moving artifacts in the parallel and non-parallel MRI are investigated. From the simulation, non-parallel MRI shows smaller root mean square error (RMSE) values than the parallel MRI for the periodic (type-1 and 2) motions. Parallel MRI shows less motion artifacts for linear(type-3 and 4) motions where motions are reduced with shorter acquisition time. Similar motion artifacts are observed for the random motion (type-5). Conclusion : In this paper, we simulate the motion effects in parallel MRI. Parallel MRI is effective in the reduction of motion artifacts when motion is reduced by the shorter acquisition time. However, conventional MRI shows better image quality than the parallel MRI when fast periodic motions are involved.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.10a
/
pp.415-418
/
2008
This paper presents a method for moving objects detection, analysis and expression how much move as numerical value from the image which is captured by a network camera. To perform this method, we process few kinds of pre-processing to remove noise that are getting background image, difference image, binarization and so on. And to consider perspective effect, we propose modified ART2 algorithm. Finally, we express the result of ATR2 clustering as numerical value. This method is robust to size of object which is changed by perspective effect.
So, In-Mi;Kim, Young-Un;Kang, Sun-Kyung;Han, Dae-Gyeong;Jung, Sung-Tae
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.468-471
/
2008
이 논문은 응급상황을 인식하기 위하여 어안렌즈를 통해 획득된 영상을 이용하여 기절 동작을 인식하는 방법을 제안한다. 거실의 천장 중앙에 위치한 어안렌즈(fish-eye lens)를 장착한 카메라로부터 화각이 170인 RGB 컬러 모델의 어안 영상을 입력 받은 뒤, 가우시안 혼합 모델 기반의 적응적 배경 모델링 방법을 이용하여 동적으로 배경 영상을 갱신한다. 입력 영상의 평균 밝기를 구하고 평균 밝기가 급격하게 변화하지 않도록 영상 픽셀을 보정한 뒤, 입력 영상과 배경 영상과 차이가 큰 픽셀을 찾음으로써 움직이는 객체를 추출하였다. 그리고 연결되어 있는 전경 픽셀 영역들의 외곽점들을 추적하여 타원으로 매핑하고 움직이는 객체 영역의 형태를 단순화하였다. 이 타원을 추적하면서 어안 렌즈 영상을 투시 영상으로 변환한 다음 타원의 크기 변화, 위치 변화, 이동 속도 정보를 추출하여 이동과 정지 및 움직임이 기절동작과 유사한지를 판단하도록 하였다. 본 논문에서는 실험자로 하여금 기절동작, 걷기 동작, 앉기 동작 등 여러 동작을 취하게 하고 기절 동작 인식을 실험하였다. 실험 결과 어안 렌즈 영상을 그대로 사용하는 것보다 투시 영상으로 변환하여 타원의 크기변화, 위치변화, 이동속도 정보를 이용하는 것이 높은 인식률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.